精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的一元二次方程x22xm20

1求证:该方程有两个不相等的实数根;

2)若该方程有两个实数根为x1x2,且x12x25,求m的值.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)先计算判别式的值,然后根据整式的性质判断与0的关系,即可求证,

(2)根据一元二次方程根与系数关系可得: ,,可得: ,所以,解得: ,再根据,可得:

,即可求解m.

试题解析:1)证明:b24ac(2)24(m2)44m2,

≥0,

44m20,

b24ac0,

∴该方程有两个不相等的实数根,

2)由题意,得x1x22x1x2= -m2,

又∵x12x25,

x13,x2=-1,

m2=-3,m23,

解得m.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】国家规定个人发表文章、出版图书获得稿费的纳税计算方法是:(l)稿费不高于800元的不纳税;(2)稿费高于800元又不高于4000元的,减除其中的800元,其余部分按20%纳税:(3)稿费高于4000元,减除稿酬的20%,其余部分按20%纳税.今知丁老师获得一笔稿费,并缴纳个人所得税600元,问:丁老师的这笔稿费有多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:

由于a≠0,方程ax2+bx+c=0变形为:

x2+x=﹣,…第一步

x2+x+(2=﹣+(2,…第二步

(x+2=,…第三步

x+=(b2﹣4ac>0),…第四步

x=,…第五步

嘉淇的解法从第  步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是  

用配方法解方程:x2﹣2x﹣24=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数的图象于点M,AOM的面积为3.

(1)求反比例函数的解析式;

(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形有一个顶点在反比例函数的图象上,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.

(1)证明:AF=CE;

(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋中装有2个红球(记为红1、红2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.

(1)从中任意摸出1个球,恰好摸到红球的概率是

(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用画树状图或列表法求两次都摸到红球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班学生参加公民道德知识竞赛,将竞赛所取得的成绩(得分取整数)进行整理后分成5组,并绘制成频率分布直方图,如下图所示,请结合直方图提供的信息,回答下列问

(1)该班共有多少名学生?

(2)60.5~70.5这一分数段的频数、频率分别是多少?

(3)根据统计图,提出一个问,并回答你所提出的问

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=6,AC=8,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为(

A. 360 B. 400 C. 440 D. 484

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】m是何值时,关于x的方程(m2+2x2+m﹣1x﹣4=3x2

1)是一元二次方程;

2)是一元一次方程;

3)若x=﹣2是它的一个根,求m的值.

查看答案和解析>>

同步练习册答案