精英家教网 > 初中数学 > 题目详情

【题目】如图,已知,二次函数的图像交轴正半轴于点,顶点为,一次函数的图像交轴于点,交轴于点的正切值为.

(1)求二次函数的解析式与顶点坐标;

(2)将二次函数图像向下平移个单位,设平移后抛物线顶点为,若,求的值.

【答案】1)二次函数解析式为yx22x,顶点P的坐标是(1,-1);(2m.

【解析】

1)先根据题中所给条件求出A点坐标,再利用待定系数法求出函数解析式,将求出的函数解析式化为顶点式,即可得到顶点P的坐标;(2)用含m的代数式表示出P′的坐标,用含m的代数式表示SABPS△BCP′,根据SABPS△BCP′求出m的值即可.

1)∵一次函数解析式为yx3

OC3

tanOCA

OA2

A点坐标为(2,0),将A点坐标代入函数解析式得42b0

解得b=﹣2

∴二次函数解析式为yx22x

将二次函数解析式化为顶点式,得y=(x121

∴顶点P的坐标为(1,﹣1.

2)如图所示,其中l为抛物线的对称轴,Dlx轴的交点,

y0时,x30,解得x6

B点坐标为(6,0),

AB624

RtBOC中,BC

P′是将二次函数图像向下平移个单位后得到的抛物线的顶点,

P′的坐标为(1,﹣1m),∴DP′=1m

SABP×AB×DP′=×4×(1m)=22m

P′在直线yx3的左侧时,

SBCPSBOC-(S梯形ODPCSBDP)=3m

SABPS△BCP′

22m3m,解得m

P′在直线yx3的右侧时,

SBCP=(S梯形ODPCSBDP)-SBOC3m

SABPS△BCP′

22m=﹣m,解得m

综上,m.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.

(1)求证:PB=QC;

(2)若PA=3,PB=4,∠APB=150°,求PC的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y1=ax2+bx+ca≠0)和一次函数y2=kx+nk≠0)的图象如图所示,下面有四个推断:

①二次函数y1有最大值;

②二次函数y1的图象关于直线x=﹣1对称

③当x=﹣2时,二次函数y1的值大于0

④过动点Pm0)且垂直于x轴的直线与y1y2的图象的交点分别为CD,当点C位于点D上方时,m的取值范围是m﹣3m﹣1

以上推断正确的是( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有这样一个问题:探究函数y的图象与性质.小彤根据学习函数的经验,对函数y的图象与性质进行了探究.

下面是小彤探究的过程,请补充完整:

(1)函数y的自变量x的取值范围是   

(2)下表是yx的几组对应值:

x

2

1

0

1

2

4

5

6

7

8

y

m

0

1

3

2

m的值为   

(3)如图所示,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;

(4)观察图象,写出该函数的一条性质   

(5)若函数y的图象上有三个点A(x1y1)B(x2y2)C(x3y3),且x13x2x3,则y1y2y3之间的大小关系为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC的顶点坐标分别为A(3,0),B(0,4),C(-3,0).动点M,N同时从A点出发,M沿A→C,N沿折线A→B→C,均以每秒1个单位长度的速度移动,当一个动点到达终点C时,另一个动点也随之停止移动,移动时间记为t秒.连接MN.

(1)求直线BC的解析式;

(2)移动过程中,将△AMN沿直线MN翻折,点A恰好落在BC边上点D处,求此时t值及点D的坐标;

(3)当点M,N移动时,记△ABC在直线MN右侧部分的面积为S,求S关于时间t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的直径,CB,CD分别切⊙O于点B,D,CDBA的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F。

(1)求证:∠FEB=∠ECF

(2)BC= 12, DE=8 EA的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:

①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:

时间(第x天)

1

3

6

10

日销售量(m件)

198

194

188

180

②该产品90天内每天的销售价格与时间(第x天)的关系如下表:

时间(第x天)

1≤x<50

50≤x≤90

销售价格(元/件)

x+60

100

(1)求m关于x的一次函数表达式;

(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格-每件成本)】

(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.

查看答案和解析>>

同步练习册答案