【题目】如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣3,0)、B(5,0)、C(0,5)三点,O为坐标原点
(1)求此抛物线的解析式;
(2)若把抛物线y=ax2+bx+c(a≠0)向下平移个单位长度,再向右平移n(n>0)个单位长度得到新抛物线,若新抛物线的顶点M在△ABC内,求n的取值范围;
(3)设点P在y轴上,且满足∠OPA+∠OCA=∠CBA,求CP的长.
【答案】(1)y=﹣x2+x+5;(2)0<n<3;(3)PC的长为7或17.
【解析】
试题分析:(1)根据A、B、C三点的坐标,利用待定系数法可求得抛物线的解析式即可;(2)可先求得抛物线的顶点坐标,再利用坐标平移,可得平移后的坐标为(1+n,1),再由B、C两点的坐标可求得直线BC的解析式,可求得y=1时,对应的x的值,从而可求得n的取值范围;(3)当点P在y轴负半轴上和在y轴正半轴上两种情况,根据这两种情况分别求得PC的长即可.
试题解析:(1)把A、B、C三点的坐标代入函数解析式可得,
解得,
∴抛物线解析式为y=﹣x2+x+5;
(2)∵y=﹣x2+x+5,
∴抛物线顶点坐标为(1,),
∴当抛物线y=ax2+bx+c(a≠0)向下平移个单位长度,再向右平移n(n>0)个单位长度后,得到的新抛物线的顶点M坐标为(1+n,1),
设直线BC解析式为y=kx+m,把B、C两点坐标代入可得,解得,
∴直线BC的解析式为y=﹣x+5,
令y=1,代入可得1=﹣x+5,解得x=4,
∵新抛物线的顶点M在△ABC内,
∴1+n<4,且n>0,解得0<n<3,
即n的取值范围为0<n<3;
(3)当点P在y轴负半轴上时,如图1,过P作PD⊥AC,交AC的延长线于点D,
由题意可知OB=OC=5,
∴∠CBA=45°,
∴∠PAD=∠OPA+∠OCA=∠CBA=45°,
∴AD=PD,
在Rt△OAC中,OA=3,OC=5,可求得AC=,
设PD=AD=m,则CD=AC+AD=+m,
∵∠ACO=∠PCD,∠COA=∠PDC,
∴△COA∽△CDP,
∴,即,
解得m=,PC=17;
可求得PO=PC﹣OC=17﹣5=12,
如图2,在y轴正半轴上截取OP′=OP=12,连接AP′,
则∠OP′A=∠OPA,
∴∠OP′A+∠OCA=∠OPA+∠OCA=∠CBA,
∴P′也满足题目条件,此时P′C=OP′﹣OC=12﹣5=7,
综上可知PC的长为7或17.
科目:初中数学 来源: 题型:
【题目】如图,直线l:y=﹣x+1与x轴,y轴分别交于A,B两点,点P,Q是直线l上的两个动点,且点P在第二象限,点Q在第四象限,∠POQ=135°.
(1)求△AOB的周长;
(2)设AQ=t>0,试用含t的代数式表示点P的坐标;
(3)当动点P,Q在直线l上运动到使得△AOQ与△BPO的周长相等时,记tan∠AOQ=m,若过点A的二次函数y=ax2+bx+c同时满足以下两个条件:
①6a+3b+2c=0;
②当m≤x≤m+2时,函数y的最大值等于,求二次项系数a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学的部分学生参加该市中学生知识竞赛,小王同学统计了所有参赛同学的成绩,并且根据学过的知识绘制了统计图.请根据图中提供的信息回答问题:
(1)该校参加本竞赛的同学共_________人;
(2)若成绩在6分以上的(含6分)的同学获奖,则该校参赛同学的获奖率为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下面给出的数轴中A表示1,B表示﹣2.5,回答下面的问题:
(1)A、B之间的距离是
(2)观察数轴,与点A的距离为5的点表示的数是: ;
(3)若将数轴折叠,使A点与﹣2表示的点重合,则B与数 表示的点重合
(4)若数轴上M、N两点之间的距离为2016(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是:M: N: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.
(1)求这条抛物线对应的函数解析式;
(2)求直线AB对应的函数解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com