精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣3,0)、B(5,0)、C(0,5)三点,O为坐标原点

(1)求此抛物线的解析式;

(2)若把抛物线y=ax2+bx+c(a≠0)向下平移个单位长度,再向右平移n(n>0)个单位长度得到新抛物线,若新抛物线的顶点M在△ABC内,求n的取值范围;

(3)设点P在y轴上,且满足∠OPA+∠OCA=∠CBA,求CP的长.

【答案】(1)y=﹣x2+x+5;(2)0<n<3;(3)PC的长为7或17.

【解析】

试题分析:(1)根据A、B、C三点的坐标,利用待定系数法可求得抛物线的解析式即可;(2)可先求得抛物线的顶点坐标,再利用坐标平移,可得平移后的坐标为(1+n,1),再由B、C两点的坐标可求得直线BC的解析式,可求得y=1时,对应的x的值,从而可求得n的取值范围;(3)当点P在y轴负半轴上和在y轴正半轴上两种情况,根据这两种情况分别求得PC的长即可.

试题解析:(1)把A、B、C三点的坐标代入函数解析式可得

解得

∴抛物线解析式为y=﹣x2+x+5;

(2)∵y=﹣x2+x+5,

∴抛物线顶点坐标为(1,),

∴当抛物线y=ax2+bx+c(a≠0)向下平移个单位长度,再向右平移n(n>0)个单位长度后,得到的新抛物线的顶点M坐标为(1+n,1),

设直线BC解析式为y=kx+m,把B、C两点坐标代入可得,解得

∴直线BC的解析式为y=﹣x+5,

令y=1,代入可得1=﹣x+5,解得x=4,

∵新抛物线的顶点M在△ABC内,

∴1+n<4,且n>0,解得0<n<3,

即n的取值范围为0<n<3;

(3)当点P在y轴负半轴上时,如图1,过P作PD⊥AC,交AC的延长线于点D,

由题意可知OB=OC=5,

∴∠CBA=45°,

∴∠PAD=∠OPA+∠OCA=∠CBA=45°,

∴AD=PD,

在Rt△OAC中,OA=3,OC=5,可求得AC=

设PD=AD=m,则CD=AC+AD=+m,

∵∠ACO=∠PCD,∠COA=∠PDC,

∴△COA∽△CDP,

,即

得m=,PC=17;

可求得PO=PC﹣OC=17﹣5=12,

如图2,在y轴正半轴上截取OP′=OP=12,连接AP′,

则∠OP′A=∠OPA,

∴∠OP′A+∠OCA=∠OPA+∠OCA=∠CBA,

∴P′也满足题目条件,此时P′C=OP′﹣OC=12﹣5=7,

综上可知PC的长为7或17.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线l:y=﹣x+1与x轴,y轴分别交于A,B两点,点P,Q是直线l上的两个动点,且点P在第二象限,点Q在第四象限,∠POQ=135°.

(1)求△AOB的周长;

(2)设AQ=t>0,试用含t的代数式表示点P的坐标;

(3)当动点P,Q在直线l上运动到使得△AOQ与△BPO的周长相等时,记tan∠AOQ=m,若过点A的二次函数y=ax2+bx+c同时满足以下两个条件:

①6a+3b+2c=0;

②当m≤x≤m+2时,函数y的最大值等于,求二次项系数a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学的部分学生参加该市中学生知识竞赛,小王同学统计了所有参赛同学的成绩,并且根据学过的知识绘制了统计图.请根据图中提供的信息回答问题:

(1)该校参加本竞赛的同学共_________人;

(2)若成绩在6分以上的(6)的同学获奖,则该校参赛同学的获奖率为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x22xm0没有实数根,试判断关于x的方程x22mxm(m1)0的根的情况.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下面给出的数轴中A表示1,B表示﹣2.5,回答下面的问题:

(1)AB之间的距离是   

(2)观察数轴,与点A的距离为5的点表示的数是:   

(3)若将数轴折叠,使A点与﹣2表示的点重合,则B与数   表示的点重合

(4)若数轴上MN两点之间的距离为2016(MN的左侧),且MN两点经过(3)中折叠后互相重合,则MN两点表示的数分别是:M    N   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知xm=3,xn=4,则xm+2n=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知DE∥BCCD∠ACB的平分线,∠B70°∠ACB50°,求∠EDC∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.

(1)求这条抛物线对应的函数解析式;

(2)求直线AB对应的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面内,⊙O的半径为2cm,圆心O到直线l的距离为3cm,则直线l与⊙O的位置关系是(  )
A.内含
B.相交
C.相切
D.相离

查看答案和解析>>

同步练习册答案