精英家教网 > 初中数学 > 题目详情

【题目】a+b=5,ab=2,则(a﹣2)(3b﹣6)=

【答案】-12
【解析】解:∵a+b=5,ab=2, ∴(a﹣2)(3b﹣6)
=3ab﹣6a﹣6b+12
=3ab﹣6(a+b)+12
=3×2﹣6×5+12
=﹣12.
所以答案是:﹣12.
【考点精析】本题主要考查了多项式乘多项式的相关知识点,需要掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下列材料解决问题:

材料:古希腊著名数学家 毕达哥拉斯发现把数1,3,6,10,15,21这些数量的(石子),都可以排成三角形,则称像这样的数为三角形数.

把数 1,3,6,10,15,21换一种方式排列,即

1=1

1+2=3

1+2+3=6

1+2+3+4=10

1+2+3+4+5=15

从上面的排列方式看,把1,3,6,10,15,叫做三角形数名副其实

(1)设第一个三角形数为a1=1,第二个三角形数为a2=3,第三个三角形数为a3=6,请直接写出第n个三角形数为an的表达式(其中n为正整数).

(2)根据(1)的结论判断66是三角形数吗?若是请说出66是第几个三角形数?若不是请说明理由.

(3)根据(1)的结论判断所有三角形数的倒数之和T与2的大小关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在某一平地上,有一棵树高8米的大树,一棵树高3米的小树,两树之间相距12米。今一只小鸟在其中一棵树的树梢上,要飞到另一棵树的树梢上,问它飞行的最短距离是多少?(画出草图然后解答)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式中,计算正确的是(  )

A. a﹣b2=a2﹣b2 B. 2x﹣y2=4x2﹣2xy+y2

C. (a﹣3b)(a+3b=a2﹣9b2 D. (15 x2 y-10x y2) ÷5xy=3x-2 y2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一组数据417456则这组数据的极差为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形中,既是轴对称图形又是中心对称图形的是(  )

A.等边三角形B.菱形C.平行四边形D.正五边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.
(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A,B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.
(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A,B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.
(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E,F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F

1)求证:AE=EF

2)如图2,若把条件E是边BC的中点改为E是边BC上的任意一点其余条件不变,(1)中的结论是否仍然成立?  ;(填成立不成立);

3)如图3,若把条件E是边BC的中点改为E是边BC延长线上的一点其余条件仍不变,那么结论AE=EF是否成立呢?若成立请证明,若不成立说明理由.

查看答案和解析>>

同步练习册答案