【题目】如图,己知点C是线段BD上一点,以BC、 DC为一边在BD的同一侧作等边△ABC和等边△ECD,连接AD, BE相交于点F, AC和BE交于点M, AD, CE交于点N,(注:等边三角形的每一个内角都等于60° )
(1) 求证: AD=BE
(2) 线段CM与CN相等吗?请证明你的结论。
(3) 求∠BFD的度数。
【答案】(1)见解析;(2)BM=AN 理由见解析;(3)120°.
【解析】
(1)根据已知条件易证△ACD≌△BCE,即可证明AD=BE;
(2)易证△BCM≌△ACN,即可进行判断;
(3)根据△ACD≌△BCE,∠EBC+∠ADC=∠EBC+∠BEC=∠ECD=60°,故根据△BDF的内角和即可求解.
(1)证明:∵△ABC、△DCE均是等边三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCE=∠ACD,
∴△ACD≌△BCE(SAS),
∴BD=AE;
(2)∵△ACD≌△BCE
∴∠CBM=∠CAN
∵∠BCM=∠ECD=60°,∴∠ACN=60°,
又BC=AC
∴△BCM≌△ACN (ASA)
∴BM=AN.
(3)∵△ACD≌△BCE,
∴∠EBC+∠ADC=∠EBC+∠BEC=∠ECD=60°,
∴在△BDF中∠BFD=180°-(∠EBC+∠ADC)=120°.
科目:初中数学 来源: 题型:
【题目】2018年宜宾市创建全国文明城市的过程中,某小区决定购买文明用语提示牌和文明信息公示栏.若购买2个提示牌和3个公示栏需要510元;购买3个提示牌和5个公示栏需要840元.
(1)求提示牌和公示栏的单价各是多少元?
(2)若该小区购买提示牌和公示栏共50个,要求购买公示栏至少12个,且总费用不超过3200元.请你列举出所有购买方案,并指出哪种方案费用最少,最少费用为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某联欢会上有一个有奖游戏,规则如下:有5张纸牌,背面都是喜羊羊头像,正面有2张是笑脸,其余3张是哭脸.现将5张纸牌洗匀后背面朝上摆放到桌上,若翻到的纸牌中有笑脸就有奖,没有笑脸就没有奖.
(1)小芳获得一次翻牌机会,她从中随机翻开一张纸牌.小芳得奖的概率是.
(2)小明获得两次翻牌机会,他同时翻开两张纸牌.小明认为这样得奖的概率是小芳的两倍,你赞同他的观点吗?请用树形图或列表法进行分析说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A,B两点在数轴上如图所示,其中O为原点,点A对应的有理数为a,点B对应的有理数为b,且点A距离原点6个单位长度,a.b满足b-|a|=2.
(1)a=______;b=______;
(2)动点P从点A出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒(t>0)
①当PO=2PB时,求点P的运动时间t:
②当PB=6时,求t的值:
(3)当点P运动到线段OB上时,分别取AP和OB的中点E、F,则的值是否为一个定值?如果是,求出定值,如果不是,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 在□ABCD中,点E、F是AD、BC的中点,连接BE、DF.
(1)求证:BE=DF.
(2)若BE平分∠ABC且交边AD于点E,AB=6cm,BC=10cm,试求线段DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中,已知点A(0,10),点P(m,10),连接AP、OP,将△AOP沿直线OP翻折得到△EOP(点A的对应点为点E).若点E到x轴的距离不大于6,则m的取值范围是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com