【题目】如图所示,⊙O的直径AB和弦CD相交于点E,且点B是劣弧DF的中点.
(1)求证:△EBD≌△EBF;
(2)已知AE=1,EB=5,∠DEB=30°,求CD的长.
【答案】(1)见解析;(2)CD=4
【解析】
(1)连接OD、OF,,根据等弧所对的弦相等,可得BD=BF,再根据弧与圆周角的关系可得∠DBE=∠EBF,利用SAS可得结论;
(2)先由AE=1,EB=5,得到半径OB=3,则OE=2,在Rt△EFO中,利用含30度的直角三角形三边的关系得到OG的长,根据勾股定理可计算DG的长,从而得CD的长.
解:(1)连接OD、OF,
∵B是劣弧DF的中点,
∴,
∴,
∴BD=BF,∠DBE=∠EBF,
在△EBD和△EBF中,
∵,
∴△EBD≌△EBF(SAS);
(2)∵AE=1,EB=5,
∴AB=6,
∵AB是⊙O的直径,
∴OD=OA=3,OE=3﹣1=2,
过O作OG⊥CD于G,则CD=2DG,
∵∠DEB=30°,∠EGO=90°,
∴OG=OE=1,
由勾股定理得:DG===2,
∴CD=2DG=4.
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点分别为A(﹣1,2)、B(2,1)、C(4,5).
(1)画出△ABC关于x对称的△A1B1C1;
(2)以原点O为位似中心,在x轴的上方画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2,并求出△A2B2C2的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,AC=6,BC=8,D边BC上的任意一点,将∠C沿过点D的直线折叠,使点C落在斜边AB上的点E处,当△BDE是直角三角形时,CD的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两棵树(大树和小树)在一盏路灯下的影子如图所示
(1)确定路灯灯泡的位置(用点P表示)和表示婷婷的影长的线段(用线段AB表示).
(2)若小树高为2m,影长为4m;婷婷高1.5m,影长为4.5米,且婷婷距离小树10米,试求出路灯灯泡的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知锐角△ABC中,AB=AC,边BC长为6,高AD长为4,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC的另两边上,则正方形PQMN的边长为( )
A.B.或
C.或D.或
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,依次下去,则点B7的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请将宽为3cm、长为ncm的长方形(n为正整数)分割成若干小正方形,要求小正方形的边长是正整数且个数最少.例如,当n=5cm时,此长方形可分割成如右图的4个小正方形.
请回答下列问题:
(1)n=16时,可分割成几个小正方形?
(2)当长方形被分割成20个小正方形时,求n所有可能的值;
(3)一般地,n>3时,此长方形可分割成多少个小正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A逆时针方向旋转60°到△AB'C'的位置,则图中阴影部分的面积是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某幢大楼顶部有广告牌CD,小宇身高MA为1.89米,他站在立在离大楼45米的A处测得大楼顶端点D的仰角为30°;接着他向大楼前进15米,站在点B处测得广告牌顶端点C的仰角为45°.
(1)求这幢大楼的高DH;
(2)求这块广告牌CD的高度.(取≈1.732,计算结果保留一位小数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com