【题目】某商场将每件进价为元的某种商品原来按每件元出售,一天可售出件.后来经过市场调查,发现这种商品单价每降低元,其销量可增加件.
求商场经营该商品原来一天可获利润多少元?
若商场经营该商品一天要获利润元,并让顾客得到实惠,则每件商品应降价多少元?
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E是ABCD的边CD的中点,延长AE交BC的延长线于点F.
(1)求证:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,DO平分∠AOC,OE平分∠BOC,若OA⊥OB,
(1)当∠BOC=30°,∠DOE=_______________; 当∠BOC=60°,∠DOE=_______________;
(2)通过上面的计算,猜想∠DOE的度数与∠AOB有什么关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的“探究”
(提出问题)三个有理数a、b、c满足abc>0,求的值.
(解决问题)
解:由题意得:a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.
①a,b,c都是正数,即a>0,b>0,c>0时,
则:==1+1+3;
②当a,b,c有一个为正数,另两个为负数时,设a>0,b<0,c<0,
则:==1+(﹣1)+(﹣1)=﹣1
所以的值为3或﹣1.
(探究)请根据上面的解题思路解答下面的问题:
(1)三个有理数a,b,c满足abc<0,求的值;
(2)已知|a|=3,|b|=1,且a<b,求a+b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)先完成下列表格:
a | …… | 0.0001 | 0.01 | 1 | 100 | 10000 | …… |
…… | 0.01 | ______ | 1 | ______ | ______ | …… |
(2)由上表你发现什么规律?
(3)根据你发现的规律填空:
①已知=1.732则=______=______
②已知=0.056,则=______
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】盒中有x个黑球和y个白球,这些球除颜色外无其他差别.从盒中随机取一个球,它是黑球的概率是;往盒中再放进1个黑球,这时取得黑球的概率变为.
(1)试求出x和y的值;
(2)小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.游戏公平吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠BDG+∠EFG=180°,∠DEF=∠B,试判断∠AED与∠C的大小关系,并加以说明.
解:∠AED=∠C.
理由:∵∠EFD+∠EFG=180°( ),
∠BDG+∠EFG=180°(已知)
∴∠BDG =∠EFD ( ),
∴BD∥EF( ),
∴∠BDE+∠DEF =180°( ).
又∵∠DEF=∠B( ),
∴∠BDE+∠B =180°( ),
∴DE∥BC( ),
∴∠AED=∠C( ).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com