【题目】已知△ABC内接于⊙O,连接OA,OB,OC,设∠OAC=α,∠OBA=β,∠OCB=γ.则下列叙述中正确的有( )
①若α<β,α<γ,且OC∥AB,则γ=90°﹣α;
②若α:β:γ=1:4:3,则∠ACB=30°;
③若β<α,β<γ,则α+γ﹣β=90°;
④若β<α,β<γ,则∠BAC+∠ABC=α+γ﹣2β.
A. ①②B. ③④C. ①②③D. ①②③④
【答案】A
【解析】
根据圆的性质、等腰三角形的性质和三角形内角和公式,依次分析题干所列四种情况下,结论的正误.
解:①如图1,∵OC∥AB,
∴∠BOC=∠OBA=β,∠AOC=180°﹣β,
∵OB=OC
∴∠OBC=∠OCB=γ
∵∠BOC+∠OBC+∠OCB=180°,即:β+γ+γ=180°
∴γ=90°﹣β,
∵∠AOC+∠OAC+∠OCA=180°,
∴180°﹣β+α+α=180°
∴β=2α
∴γ=90°﹣α
故①正确;
②如图2,∠OAC=∠OCA=α,∠OBA=∠OAB=β,∠OCB=∠OBC=γ
∵α:β:γ=1:4:3,
∴∠BAD=β﹣α=3α,∠ABD=β=4α,∠ADB=∠OBC+∠ACB=γ+γ﹣α=5α
∵∠BAD+∠ABD+∠ADB=180°
∴3α+4α+5α=180°
∴α=15°
∴∠ACB=2α=30°,
故②正确.
③如图3,∵OA=OC=OB
∴∠OCA=∠OAC=α,∠OAB=∠OBA=β,∠OBC=∠OCB=γ
∴2(α+β+γ)=180°
∴α+β+γ=90°
故③不正确
④如图3,∠BAC+∠ABC=2α+β+γ≠α+γ﹣2β
故④不正确
故选:A.
科目:初中数学 来源: 题型:
【题目】某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)
(1)若顾客选择方式一,则享受9折优惠的概率为 ;
(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.
(1)抛物线的解析式为 ,抛物线的顶点坐标为 ;
(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;
(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;
(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是大小相等的边长为1的正方形构成的网格,,,,均为格点.与交于点.
[1].的值为_________.
[2].现只有无刻度的直尺,请在给定的网格中作出一个格点三角形.要求:①三角形中含有与大小相等的角;②可借助该三角形求得的三角函数值.请并在横线上简单说明你的作图方法.____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利120元.
(1)求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)
(2)商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,D为AC上的一点,过D作DE⊥AC,过B作BE⊥AB,DE,BE交于点 E.已知BC=3,AB=5.
(1)证明:△EFB∽△ABC.
(2)若CD=1,请求出ED的长.
(3)连结AE,记CD=a,△AFE与△EBF面积的差为b.若存在实数t1,t2,m(其中t1≠t2),当a=t1或a=t2时,b的值都为m.求实数m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017广东省)如图,AB是⊙O的直径,AB=,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.
(1)求证:CB是∠ECP的平分线;
(2)求证:CF=CE;
(3)当时,求劣弧的长度(结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知抛物线与轴交于),两点,与轴交于点,连接.
(1)求该抛物线的解析式,并写出它的对称轴;
(2)点为抛物线对称轴上一点,连接,若,求点的坐标;
(3)已知,若是抛物线上一个动点(其中),连接,求面积的最大值及此时点的坐标.
(4)若点为抛物线对称轴上一点,抛物线上是否存在点,使得以为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】建国七十周年到来之际,海庆中学决定举办以“祖国在我心中”为主题的读书活动,为了使活动更具有针对性,学校在全校范围内随机抽取部分学生进行问卷调查,要求学生在“教育.科技.国防.农业.工业”五类书籍中,选取自己最想读的一种(必选且只选一种),学校将收集到的调查结果适当整理后,绘制成如图所示的不完整的统计图,请根据图中所给的信息解答下列问题:
(1)在这次调查中,一共抽取了多少名学生?
(2)请通过计算补全条形统计图;
(3)如果海庆中学共有1500名学生,请你估计该校最想读科技类书籍的学生有多少名?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com