【题目】如图,在平面直角坐标系中,已知抛物线与轴交于),两点,与轴交于点,连接.
(1)求该抛物线的解析式,并写出它的对称轴;
(2)点为抛物线对称轴上一点,连接,若,求点的坐标;
(3)已知,若是抛物线上一个动点(其中),连接,求面积的最大值及此时点的坐标.
(4)若点为抛物线对称轴上一点,抛物线上是否存在点,使得以为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点的坐标;若不存在,请说明理由.
【答案】(1),对称轴;(2);(3)面积有最大值是,;(4)存在点使得以为顶点的四边形是平行四边形,或或.
【解析】
(1)将点A(-1,0),B(3,0)代入y=ax2+bx+2即可;
(2)过点D作DG⊥y轴于G,作DH⊥x轴于H,设点D(1,y),在Rt△CGD中,CD2=CG2+GD2=(2-y)2+1,在Rt△BHD中,BD2=BH2+HD2=4+y2,可以证明CD=BD,即可求y的值;
(3)过点E作EQ⊥y轴于点Q,过点F作直线FR⊥y轴于R,过点E作FP⊥FR于P,证明四边形QRPE是矩形,根据S△CEF=S矩形QRPE-S△CRF-S△EFP,代入边即可;
(4)根据平行四边形对边平行且相等的性质可以得到存在点M使得以B,C,M,N为顶点的四边形是平行四边形,点M(2,2)或M(4,- )或M(-2,-);
解:(1)将点代入,
可得,
;
对称轴;
(2)如图1:过点作轴于,作轴于,
设点,
,
在中,,
在中,,
在中,
,
,
;
(3)如图2:过点作轴于点,过点作直线轴于,过点作于,
,
四边形是矩形,
,
,
,
当时,面积有最大值是,
此时;
(4)存在点使得以为顶点的四边形是平行四边形,
设,
①四边形是平行四边形时,
②四边形时平行四边形时,
,
;
③四边形时平行四边形时,
,
,
;
综上所述:或或;
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx﹣1与x轴的交点为A(﹣1,0),B(2,0),且与y轴交于C点.
(1)求该抛物线的表达式;
(2)点C关于x轴的对称点为C1,M是线段BC1上的一个动点(不与B、C1重合),ME⊥x轴,MF⊥y轴,垂足分别为E、F,当点M在什么位置时,矩形MFOE的面积最大?说明理由.
(3)已知点P是直线y=x+1上的动点,点Q为抛物线上的动点,当以C、C1、P、Q为顶点的四边形为平行四边形时,求出相应的点P和点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC内接于⊙O,连接OA,OB,OC,设∠OAC=α,∠OBA=β,∠OCB=γ.则下列叙述中正确的有( )
①若α<β,α<γ,且OC∥AB,则γ=90°﹣α;
②若α:β:γ=1:4:3,则∠ACB=30°;
③若β<α,β<γ,则α+γ﹣β=90°;
④若β<α,β<γ,则∠BAC+∠ABC=α+γ﹣2β.
A. ①②B. ③④C. ①②③D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.
(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.
①求证:BD⊥CF;
②当AB=2,AD=3时,求线段DH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形的顶点坐标为,点在边上从点运动到点,以为边作正方形,连,在点运动过程中,请探究以下问题:
(1)的面积是否改变,如果不变,求出该定值;如果改变,请说明理由;
(2)若为等腰三角形,求此时正方形的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.
请你根据统计图解答下列问题:
(1)参加比赛的学生共有____名;
(2)在扇形统计图中,m的值为____,表示“D等级”的扇形的圆心角为____度;
(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景:如图,将绕点逆时针旋转60°得到,与交于点,可推出结论:
问题解决:如图,在中,,,.点是内一点,则点到三个顶点的距离和的最小值是___________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,等腰的边与反比例函数的图象相交于点,其中,点在轴的正半轴上,点的坐标为,过点作轴于点.
(1)已知一次函数的图象过点,求该一次函数的表达式;
(2)若点是线段上的一点,满足,过点作轴于点,连结,记的面积为,设,.
①用表示(不需要写出的取值范围);
②当取最小值时,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com