精英家教网 > 初中数学 > 题目详情
1.已知直线y=-$\frac{3}{4}x+3$分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒,以C为顶点的抛物线y=(x+m)2+n与直线AB的另一交点为D,设△COD的OC边上的高为h,当t=$\frac{36}{25}$时,h的值最大.

分析 根据过点D作DE⊥CP于点E,得出△DEC∽△AOB,进而得出CD的长;要使OC边上的高H的值最大,只要OC最短,当OC⊥AB时,CO最短,此时OC的长为$\frac{12}{5}$,∠BCO=90°,进而得出t的值.

解答 解:如图:

以C为顶点的抛物线解析式为y=(x-t)2-$\frac{3}{4}$t+3,
由(x-t)2-$\frac{3}{4}$t+3=-$\frac{3}{4}$x+3,
解得:x1=t,x2=t-$\frac{3}{4}$,
过点D作DE⊥CP于点E,
则∠DEC=∠AOB=90°,
DE∥OA,
∴∠EDC=∠OAB,
∴△DEC∽△AOB,
∴$\frac{DE}{AO}$=$\frac{CD}{AB}$,
∵AO=4,AB=5,DE=t-(t-$\frac{3}{4}$)=$\frac{3}{4}$,
∴CD=$\frac{DE•BA}{AO}$=$\frac{\frac{3}{4}×5}{4}$=$\frac{15}{16}$;
CD边上的高=$\frac{3×4}{5}$=$\frac{12}{5}$,
∴S△COD=$\frac{1}{2}$×$\frac{15}{16}$=$\frac{9}{8}$,
∴S△COD为定值,
要使OC边上的高H的值最大,只要OC最短,
∵当OC⊥AB时,CO最短,此时OC的长为$\frac{12}{5}$,∠BCO=90°,
∵∠AOB=90°,
∴∠COP=90°-∠BOC=∠OBA,
又∵CP⊥OA,
∴Rt△PCO∽Rt△OAB,
∴$\frac{OP}{OB}$=$\frac{OC}{BA}$,
∴OP=$\frac{OC•BO}{BA}$=$\frac{12}{5}$×$\frac{3}{5}$=$\frac{36}{25}$,即t=$\frac{36}{25}$,
当t为$\frac{36}{25}$秒时,h的值最大.
故答案为:$\frac{36}{25}$.

点评 此题主要考查了二次函数综合以及相似三角形的判定与性质等知识,利用已知得出相似三角形,进而得出线段长度是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

11.下列各式中一定是二次根式的是(  )
A.$\sqrt{{x}^{2}+1}$B.$\sqrt{x}$C.$\root{3}{27}$D.$\sqrt{{x}^{2}-2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:
(1)$({\sqrt{24}-\sqrt{2}})-({\sqrt{8}+\sqrt{6}})$;  
(2)${(2-\sqrt{3})^{2013}}•{(2+\sqrt{3})^{2014}}-2|{-\frac{{\sqrt{3}}}{2}}|-{(-\sqrt{3})^0}$
(3)$({\sqrt{6}+\sqrt{2}})({\sqrt{6}-\sqrt{2}})$
(4)$({2\sqrt{48}-3\sqrt{27}})÷\sqrt{6}$
(5)$(\sqrt{48}-4\sqrt{\frac{1}{8}})-(3\sqrt{\frac{1}{3}}-2\sqrt{0.5})$
(6)$\sqrt{8}×\sqrt{\frac{1}{2}}+{(\sqrt{2})^0}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,在矩形ABCD中,AB=6,BC=8,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PAB沿直线PA折叠,使点B落到点B′处;过点P作∠CPB′的角平分线交CD于点Q.设BP=x,CQ=y,则下列图象中,能表示y与x的函数关系的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知FG⊥AB,CD⊥AB,垂足分别为G,D,∠1=∠2,
求证:∠CED+∠ACB=180°,
请你将小明的证明过程补充完整.
证明:∵FG⊥AB,CD⊥AB,垂足分别为G,D(已知)
∴∠FGB=∠CDB=90°(垂直定义).
∴GF∥CD(同位角相等,两直线平行)
∵GF∥CD(已证)
∴∠2=∠BCD两直线平行,同位角相等)
又∵∠1=∠2(已知)
∴∠1=∠BCD(等量代换)
∴DE∥BC(内错角相等,两直线平行)
∴∠CED+∠ACB=180°(两直线平行,同旁内角互补)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如果是我们身旁没有量角器或三角尺,又需要作60°,30°,15°等大小的角,可以采用下面的方法(如图):
第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开.
第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时,得到了线段BN.
(1)求∠NBC的度数;
(2)通过以上折纸操作,还得到了一些不同角度的角,请写出除∠NBC以外的两个角及它们的度数;
(3)请你继续折出15°大小的角,说出折纸步骤.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知:如图在平面直角坐标系xOy中,矩形OABC的边OA在y轴的负半轴上,OC在x轴的正半轴上,OA=2,OC=3,过原点O作∠AOC的平分线交线段AB于点D,连接DC,过点D作DE⊥DC,交线段OA于点E.
(1)求过点E、D、C的抛物线的解析式;
(2)如图2将∠EDC绕点D按逆时针方向旋转后,角的一边与y轴的负半轴交于点F,另一边与线段OC交于点G,如果DF与(1)中的抛物线交于另一点M,点M的横坐标为$\frac{6}{5}$,求证:EF=2GO;
(3)对于(2)中的点G,在位于第四象限内的该跑物像上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.解方程组.
(1)$\left\{\begin{array}{l}{x+3y=7}\\{2x-y=0}\end{array}\right.$  
(2)$\left\{\begin{array}{l}{2x+3y=4}\\{3x+4y=7}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.今年以来,国务院连续发布了《关于加快构建大众创业万众创新支撑平台的指导意见》等一系列支持性政策,各地政府高度重视、积极响应,中国掀起了大众创业万众创新的新浪潮.某创新公司生产营销A、B两种新产品,根据市场调研,发现如下信息:
信息1:销售A种产品所获利润y(万元)与所售产品x(吨)之间存在二次函数关系y=ax2+bx,当x=1时,y=7;当x=2时,y=12.
信息2:销售B种产品所获利润y(万元)与所售产品x(吨)之间存在正比例函数关系y=2x.
根据以上信息,解答下列问题:
(1)求a,b的值;
(2)该公司准备生产营销A、B两种产品共10吨,请设计一个生产方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?

查看答案和解析>>

同步练习册答案