精英家教网 > 初中数学 > 题目详情
16.如图,已知FG⊥AB,CD⊥AB,垂足分别为G,D,∠1=∠2,
求证:∠CED+∠ACB=180°,
请你将小明的证明过程补充完整.
证明:∵FG⊥AB,CD⊥AB,垂足分别为G,D(已知)
∴∠FGB=∠CDB=90°(垂直定义).
∴GF∥CD(同位角相等,两直线平行)
∵GF∥CD(已证)
∴∠2=∠BCD两直线平行,同位角相等)
又∵∠1=∠2(已知)
∴∠1=∠BCD(等量代换)
∴DE∥BC(内错角相等,两直线平行)
∴∠CED+∠ACB=180°(两直线平行,同旁内角互补)

分析 根据同位角相等两直线平行证得GF∥CD,然后根据两直线平行同位角相等得出∠2=∠BCD,根据已知进一步得出∠1=∠BCD,即可证得DE∥BC,得出∠CED+∠ACB=180°.

解答 证明:∵FG⊥AB,CD⊥AB,垂足分别为G,D(已知)
∴∠FGB=∠CDB=90°(垂直定义).
∴GF∥CD(同位角相等,两直线平行),
∵GF∥CD(已证),
∴∠2=∠BCD(两直线平行,同位角相等),
又∵∠1=∠2(已知),
∴∠1=∠BCD(等量代换),
∴DE∥BC( 内错角相等,两直线平行 )
∴∠CED+∠ACB=180°(两直线平行,同旁内角互补),
故答案为:垂直定义,同位角相等,两直线平行,两直线平行,同位角相等,等量代换,DE∥BC,内错角相等,两直线平行,两直线平行,同旁内角互补.

点评 本题考查了平行线的判定与性质,属于基础题,关键是正确利用平行线的性质与判定定理证明.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.已知圆锥的母线长5,底面半径为3,则圆锥的侧面积为15π,圆锥侧面展开图形的圆心角是216度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.一种微粒的半径为0.0000004米,用科学记数法表示为4×10-7米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.一个正数a的平方根是3x-4与1-2x,则a是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,将矩形ABCD密铺在长为4cm.宽为2cm的矩形纸片右侧,若组成的新矩形与原矩形(图中阴影部分)相似,则AB=(  )cm.
A.3B.6C.8D.$\sqrt{17}$-1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知直线y=-$\frac{3}{4}x+3$分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒,以C为顶点的抛物线y=(x+m)2+n与直线AB的另一交点为D,设△COD的OC边上的高为h,当t=$\frac{36}{25}$时,h的值最大.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在平面直角坐标系中,开口向下的抛物线y=ax2+bx+c交y轴于A点,交x轴
于B、C两点(点B在点C的左侧).已知A点坐标为(0,-5),BC=4,抛物线过点(2,3).
(1)求此抛物线的解析式;
(2)记抛物线的顶点为M,求△ACM的面积;
(3)在抛物线上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,已知等边△ABC中,点D为射线BA上一点,作DE=DC,交直线BC于点E.∠ABC的平分线BF,交CD于点F,过点A作AH⊥CD于H.当∠EDC=30°,CF=$\frac{4}{3}$,则DH=$\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.化简:
(1)$\sqrt{20×35}$
(2)$\sqrt{8{a}^{2}{b}^{4}}$.

查看答案和解析>>

同步练习册答案