精英家教网 > 初中数学 > 题目详情
4.一个正数a的平方根是3x-4与1-2x,则a是多少?

分析 根据正数的平方根有2个,且互为相反数列出方程,求出方程的解得到x的值,即可确定出a的值.

解答 解:根据题意得:3x-4+1-2x=0,
解得:x=3,
则a=(3×3-4)2=25.

点评 此题考查了平方根,熟练掌握平方根的定义是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.已知二次函数y=ax2+bx+c的图象如图,以下结论正确的有(  )
①a<0,b<0,c<0;②b2-4ac>0;③2a-b=0;④ac>0;⑤a+b<0.
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知2x+3y-3=0,求4x•8y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:
(1)$({\sqrt{24}-\sqrt{2}})-({\sqrt{8}+\sqrt{6}})$;  
(2)${(2-\sqrt{3})^{2013}}•{(2+\sqrt{3})^{2014}}-2|{-\frac{{\sqrt{3}}}{2}}|-{(-\sqrt{3})^0}$
(3)$({\sqrt{6}+\sqrt{2}})({\sqrt{6}-\sqrt{2}})$
(4)$({2\sqrt{48}-3\sqrt{27}})÷\sqrt{6}$
(5)$(\sqrt{48}-4\sqrt{\frac{1}{8}})-(3\sqrt{\frac{1}{3}}-2\sqrt{0.5})$
(6)$\sqrt{8}×\sqrt{\frac{1}{2}}+{(\sqrt{2})^0}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.(1)已知ax=5,ax+y=25,求ax+ay的值;
(2)已知10α=5,10β=6,求102α-2β的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,在矩形ABCD中,AB=6,BC=8,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PAB沿直线PA折叠,使点B落到点B′处;过点P作∠CPB′的角平分线交CD于点Q.设BP=x,CQ=y,则下列图象中,能表示y与x的函数关系的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知FG⊥AB,CD⊥AB,垂足分别为G,D,∠1=∠2,
求证:∠CED+∠ACB=180°,
请你将小明的证明过程补充完整.
证明:∵FG⊥AB,CD⊥AB,垂足分别为G,D(已知)
∴∠FGB=∠CDB=90°(垂直定义).
∴GF∥CD(同位角相等,两直线平行)
∵GF∥CD(已证)
∴∠2=∠BCD两直线平行,同位角相等)
又∵∠1=∠2(已知)
∴∠1=∠BCD(等量代换)
∴DE∥BC(内错角相等,两直线平行)
∴∠CED+∠ACB=180°(两直线平行,同旁内角互补)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知:如图在平面直角坐标系xOy中,矩形OABC的边OA在y轴的负半轴上,OC在x轴的正半轴上,OA=2,OC=3,过原点O作∠AOC的平分线交线段AB于点D,连接DC,过点D作DE⊥DC,交线段OA于点E.
(1)求过点E、D、C的抛物线的解析式;
(2)如图2将∠EDC绕点D按逆时针方向旋转后,角的一边与y轴的负半轴交于点F,另一边与线段OC交于点G,如果DF与(1)中的抛物线交于另一点M,点M的横坐标为$\frac{6}{5}$,求证:EF=2GO;
(3)对于(2)中的点G,在位于第四象限内的该跑物像上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,某登山运动员从营地A沿坡度为1:$\sqrt{3}$的斜坡AB到达山顶B,如果AB=1000米,则他实际上升了500米.

查看答案和解析>>

同步练习册答案