精英家教网 > 初中数学 > 题目详情

(1)如图,在△ABC中,∠C=90°,BC>AC,点D、E、F分别是△ABC三边的中点,求证:四边形DCEF是矩形.
(2)有一个两位数,它的十位上的数字与个位上的数字之和为10,差为6,求这个两位数.

(1)证明:∵点D、E、F分别是△ABC三边的中点,
∴DF∥AC,EF∥DC,
∵∠C=90°,
∴∠CEF=90°,∠CDF=90°,
∴四边形DCEF是矩形.

(2)解:设个位上的数字x,则十位数字是x+6,由题意可得:
x+x+6=10,
2x=4,
解得:x=2;
十位数字是:x+6=2+6=8,
则这个两位数是82.
分析:(1)根据三角形中位线的性质得出DF∥AC,EF∥DC,进而利用平行线的性质得出,∠CEF=90°,∠CDF=90°,即可得出四边形DCEF是矩形;
(2)根据题意设个位上的数字x,则十位上的数字是x+6,再根据“个位与十位上的数字之和是10”列方程求解.
点评:此题主要考查了矩形的判定和一元一次方程的应用,利用等量关系表示出个位数和十位数之间的关系是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,在①AB=AC ②AD=AE ③∠B=∠C ④BD=CE四个条件中,能证明△ABD与△ACE全等的条件顺序是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图,在AB、AC上各取一点D、E,使得AE=AD,连接CD、BE相交于点O,再连接AO.若∠CAO=∠BAO,则图中全等三角形共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在AB∥CD,∠A=40°,∠C=80°.求∠E的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在AB、AC上各取一点E、D,使AE=AD,连接BD、CE相交于点O,再连接AO、BC,若∠1=∠2,则图中全等三角形共有(  )

查看答案和解析>>

同步练习册答案