【题目】在平面直角坐标系中,函数y1=ax+b(a、b为常数,且ab≠0)的图象如图所示,y2=bx+a,设y=y1·y2.
(1)当b=-2a时,
①若点(1,4)在函数y的图象上,求函数y的表达式;
②若点(x1,p)和(x2,q)在函数y的图象上,且,比较p,q的大小;
(2)若函数y的图象与x轴交于(m,0)和(n,0)两点,求证:m=.
【答案】(1) ①y=(-2x+4)(4x-2);②p>q;(2)见解析.
【解析】
(1)①由题意可得y=(ax+b)(bx+a),把b=-2a与点(1,4)分别代入求得a的值,即可得到答案;
②令(ax-2a)(-2ax+a)=0,求得x的两个值,进而得到二次函数图象的对称轴为直线x=,再根据抛物线的性质即可判断p,q的大小关系;
(2)令(ax+b)(bx+a)=0,解得x1=-,x2=-,即mn=1,整理即可得解.
解:(1)y=(ax+b)(bx+a),
当b=-2a时,y=(ax-2a)(-2ax+a)
①把(1,4)代入,得,a2=4
由题意可知,a<0,则a=-2,
∴y=(-2x+4)(4x-2);
②令(ax-2a)(-2ax+a)=0,
得x1=2,x2=,
∴二次函数y的对称轴为直线x=,
∵,
∴点(x1,p)离对称轴较近,且抛物线y开口向下
所以p>q,
(3)令(ax+b)(bx+a)=0,
得,x1=-,x2=-,
∴mn=1,
∴m=.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D (2, 3).
(1)求抛物线的解析式和直线AD的解析式;
(2)过x轴上的点E (a,0) 作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知Rt△ABC,∠BAC=90°,点D是BC中点,AD=AC,BC=4,过A,D两点作⊙O,交AB于点E,
(1)求弦AD的长;
(2)如图1,当圆心O在AB上且点M是⊙O上一动点,连接DM交AB于点N,求当ON等于多少时,三点D、E、M组成的三角形是等腰三角形?
(3)如图2,当圆心O不在AB上且动圆⊙O与DB相交于点Q时,过D作DH⊥AB(垂足为H)并交⊙O于点P,问:当⊙O变动时DP﹣DQ的值变不变?若不变,请求出其值;若变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.
(1)求证:AC是⊙O的切线;
(2)若BF=6,⊙O的半径为5,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】跳跳一家外出自驾游,出发时油箱里还剩有汽油30升,已知跳跳家的汽车每百千米的平均油耗为12升,设油箱里剩下的油量为y(单位:升),汽车行驶的路程为x(单位:千米).
(1)求y关于x的函数表达式;
(2)若跳跳家的汽车油箱中的油量低于5升时,仪表盘会亮起黄灯警报. 要使邮箱中的存油量不低于5升,跳跳爸爸至多能够行驶多少千米就要进加油站加油?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1)求平均每天销售量箱与销售价元/箱之间的函数关系式.
(2)求该批发商平均每天的销售利润w(元)与销售价(元/箱)之间的函数关系式.
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E
(1)求证:BC是⊙D的切线;
(2)若AB=5,BC=13,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】要修一个圆形喷水池,在池中心竖直安装一根水管,水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c过点A(2,0)和B(3,3).
(1)求抛物线的表达式;
(2)点M在第二象限的抛物线上,且∠MBO=∠ABO.
①直线BM交x轴于点N,求线段ON的长;
②延长BO交抛物线于点C,点P是平面内一点,连接PC、OP,当△POC∽△MOB时,请直接写出点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com