10£®¶Ôx£¬y¶¨ÒåÒ»ÖÖÐÂÔËËãx[]y=$\frac{ax-2by}{2x+y}$£¨ÆäÖÐa£¬b¾ùΪ·ÇÁã³£Êý£©£¬ÕâÀïµÈʽÓÒ±ßÊÇͨ³£µÄËÄÔò»ìºÏÔËË㣬ÀýÈ磺0[]2=$\frac{a¡Á0-2¡Áb¡Á2}{2¡Á0+2}$=-2b£®
£¨1£©ÒÑÖª1[]2=3£¬-1[]3=-2£®Çë½â´ðÏÂÁÐÎÊÌ⣮
¢ÙÇóa£¬bµÄÖµ£»
¢ÚÈôM=£¨m2-m-1£©[]£¨2m-2m2£©£¬Ôò³ÆMÊÇmµÄº¯Êý£¬µ±×Ô±äÁ¿mÔÚ-1¡Üm¡Ü3µÄ·¶Î§ÄÚȡֵʱ£¬º¯ÊýÖµMΪÕûÊýµÄ¸öÊý¼ÇΪk£¬ÇókµÄÖµ£»
£¨2£©Èôx[]y=y[]x£¬¶ÔÈÎÒâʵÊýx£¬y¶¼³ÉÁ¢£¨ÕâÀïx[]yºÍy[]x¾ùÓÐÒâÒ壩£¬ÇóaÓëbµÄº¯Êý¹ØÏµÊ½£¿

·ÖÎö £¨1£©¢Ù½áºÏÐÂÔËËãµÄ¶¨Ò壬´úÈëÊý¾Ý£¬½â¶þÔªÒ»´Î·½³Ì×é¼´¿ÉµÃ³ö½áÂÛ£»
¢Ú½«a¡¢bµÄÖµ´úÈëÔ­¶¨ÒåʽÖУ¬ÓÃm±íʾ³öM£¬Óɶþ´Îº¯ÊýµÄÐÔÖʼ´¿ÉÕÒ³öMµÄȡֵ·¶Î§£¬´Ó¶øµÃ³ökµÄÖµ£»
£¨2£©x[]y=y[]xµÃ³ö¹ØÓÚa¡¢b¡¢x¡¢yµÄµÈʽ£¬ÓɶÔÈÎÒâʵÊýx£¬y¶¼³ÉÁ¢£¬ÕÒ³öºãΪ0µÄ´úÊýʽa+4b=0£¬´Ó¶øµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©¢ÙÓÉ1[]2=3£¬-1[]3=-2£¬µÃ
$\left\{\begin{array}{l}{a-4b=12}\\{-a-6b=-2}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=8}\\{b=-1}\end{array}\right.$£®
´ð£ºaµÄֵΪ8£¬bµÄֵΪ-1£®
¢Ú°Ña=8£¬b=-1´úÈëx[]y=$\frac{ax-2by}{2x+y}$£¬µÃx[]y=$\frac{8x+2y}{2x+y}$£¬
M=£¨m2-m-1£©[]£¨2m-2m2£©=-2m2+2m+4=-2${£¨m-\frac{1}{2}£©}^{2}$+$\frac{9}{2}$£¬
ÓÖ¡ß-1¡Üm¡Ü3£¬
¡àµ±m=$\frac{1}{2}$ʱ£¬MÈ¡×î´óÖµ$\frac{9}{2}$£»
µ±m=-1ʱ£¬M=0£»
µ±m=3ʱ£¬M=-8£®
¡à-8¡ÜM¡Ü$\frac{9}{2}$=4$\frac{1}{2}$£¬
¡àk=8+4+1=13£®
£¨2£©¡ßx[]y=y[]x£¬
¡à$\frac{ax-2by}{2x+y}$=$\frac{ay-2bx}{2y+x}$£¬
¡àay2-ax2+4by2-4bx2=0£¬
¡àa£¨y2-x2£©+4b£¨y2-x2£©=0£¬
¼´£¨a+4b£©£¨y2-x2£©=0£®
¡ß¶ÔÈÎÒâʵÊýx£¬y¶¼³ÉÁ¢£¬
¡àa+4b=0£¬
¡àa=-4b£®

µãÆÀ ±¾Ì⿼²éÁ˽â¶þÔªÒ»´Î·½³Ì×éÒÔ¼°¶þ´Îº¯ÊýµÄÐÔÖÊ£¬½âÌâµÄ¹Ø¼ü£º£¨1£©¢Ù´úÈëÊý¾Ý½â¶þÔªÒ»´Î·½³Ì×飻¢Ú½áºÏ¶þ´Îº¯ÊýµÄÐÔÖÊѰÕÒ×îÖµ£»£¨2£©´úÈ붨Òåʽ£¬Ñ°ÕÒºãΪ0µÄÁ¿£®±¾ÌâÊôÓÚÖеµÌ⣬ÄѶȲ»´ó£¬µ«ÊÇÓÉÓÚÉæ¼°µ½ÐµÄÔËËã¹æÔò£¬²»ÉÙѧÉú»á·ÅÆú¸ÃÌ⣬ÆäʵÔÚ½â¾öж¨ÒåÀàÐ͵ÄÌâĿʱ£¬ÔËËã¶¼ÊǺܼòµ¥µÄ£¬Ö»ÒªÀμÇÔËËãµÄ¹æÔò£¬Ì×Èë¸ø¶¨µÄÀý×Ó¼´¿ÉµÃ³ö½áÂÛ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Óù«Ê½·¨½âÏÂÁз½³Ì£º
£¨1£©2x2+2x-1=0£»
£¨2£©y2+y=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÒÑÖªµãAÊÇ¡ÑOÉÏÒ»µã£¬Ö±ÏßMN¹ýµãA£¬µãBÊÇMNÉϵÄÁíÒ»µã£¬µãCÊÇOBµÄÖе㣬AC=$\frac{1}{2}$OB£¬ÈôµãPÊÇ¡ÑOÉϵÄÒ»¸ö¶¯µã£¬ÇÒ¡ÏOBA=30¡ã£¬AB=$2\sqrt{3}$ʱ£¬Çó¡÷APCµÄÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Éú»îÖÐÈËÃdz£°ÑÐÅÖ½°´×ÅÏÂͼµÄ˳Ðò½øÐÐÕÛµþ£¨ÒõÓ°²¿·Ö±íʾֽÌõ·´Ã棩
£¨l£©Èç¹ûÐÅÖ½Õ۳ɵij¤·½ÐÎÖ½Ìõ¿íΪ2cm£¬ÎªÁ˱£Ö¤ÄÜÕÛ³Éͼ¢ÜÐÎ×´£¨¼´Ö½ÌõÁ½¶Ë¾ù¸ÕºÃµ½´ïµãP£©£¬Ö½Ìõ³¤ÖÁÉÙ¶àÉÙÀåÃ×£¿
£¨2£©ÕÛµþºóµÃµ½µÄËıßÐÎMNEFÊÇʲôËıßÐΣ¿²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èçͼ£¬A¡¢B¡¢C¡¢DÒÀ´ÎΪһֱÏßÉÏ4¸öµã£¬BC=4£¬¡÷BCEΪµÈ±ßÈý½ÇÐΣ¬¡ÑO¹ýA¡¢D¡¢EÈýµã£¬ÇÒ¡ÏAOD=120¡ã£®ÉèAB=x£¬CD=y£¬ÔòyÓëxµÄº¯Êý¹ØÏµÊ½Îªy=$\frac{16}{x}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Ò»Áе¥Ïîʽ°´ÒÔϹæÂÉÅÅÁУºx£¬3x2£¬5x2£¬7x£¬9x2£¬l1x2£¬13x£¬¡­£¬ÔòµÚ2015¸öµ¥ÏîʽӦÊÇ£¨¡¡¡¡£©
A£®4029xB£®4029x2C£®4027xD£®4027x2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Èçͼ£¬ÔÚÒ»¿é³¤Îª22m£¬¿íΪ17mµÄ¾ØÐεØÃæÄÚ£¬ÒªÐÞÖþÁ½ÌõͬÑù¿íÇÒ»¥Ïà´¹Ö±µÄµÀ·£¨Á½ÌõµÀ··Ö±ðÓë¾ØÐεÄÒ»Ìõ±ßƽÐУ©£¬ÓàÏÂµÄÆÌÉÏ²ÝÆº£¬ÒªÊ¹²ÝƺµÄÃæ»ý´ïµ½300m2£®ÉèµÀ·µÄ¿íΪx m£¬¸ù¾ÝÌâÒâÁз½³Ì£¨20-x£©£¨32-x£©=300£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èô3x2n-1ymÓë-5xmy3ÊÇͬÀàÏÔòm£¬nµÄÖµ·Ö±ðÊÇ£¨¡¡¡¡£©
A£®3£¬-2B£®-3£¬2C£®3£¬2D£®-3£¬-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÈôµãP£¨3k-1£¬1-k£©ÔÚµÚËÄÏóÏÞ£¬ÔòkµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®k£¾1B£®k£¾$\frac{1}{3}$C£®$\frac{1}{3}$£¼k£¼1D£®k£¼$\frac{1}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸