分析 根据在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,可以得到∠ACD和∠BCD的关系,根据CD=3,BD=6,可以求得BC的长,从而可以求得∠B的各个三角函数值,从而可以求得∠ACD的各个三角函数值.
解答 解:∵在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CD=3,BD=6,
∴∠ACB=∠CDB=90°,∠ACD+∠DCB=∠DCB+∠B=90°,
∴∠ACD=∠B
∵∠CDB=90°,CD=3,BD=6,
∴$BC=\sqrt{C{D}^{2}+B{D}^{2}}=\sqrt{{3}^{2}+{6}^{2}}$=$\sqrt{45}=3\sqrt{5}$,
∴$sinB=\frac{CD}{BC}=\frac{3}{3\sqrt{5}}=\frac{\sqrt{5}}{5}$,$cosB=\frac{BD}{BC}=\frac{6}{3\sqrt{5}}=\frac{2\sqrt{5}}{5}$,$tanB=\frac{CD}{BD}=\frac{3}{6}=\frac{1}{2}$,
∴$sin∠ACD=\frac{\sqrt{5}}{5},cos∠ACD=\frac{2\sqrt{5}}{5}$,$tan∠ACD=\frac{1}{2}$,
即∠ACD的各个三角函数值分别是:$sin∠ACD=\frac{\sqrt{5}}{5},cos∠ACD=\frac{2\sqrt{5}}{5}$,$tan∠ACD=\frac{1}{2}$.
点评 本题考查解直角三角形,解题的关键是利用转化的数学思想将所求角的三角函数值转化可以求出的角的三角函数值,根据等角的三角函数值相等,即可解答所求的角的三角函数值.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | m•tanα•cosα | B. | m•cotα•cosα | C. | $\frac{m•tanα}{cosα}$ | D. | $\frac{m•tanα}{sinα}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com