【题目】如图,抛物线y=﹣x2+3x+4交x轴于A、B两点(点A在B左边),交y轴于点C.
(1)求A、B两点的坐标;
(2)求直线BC的函数关系式;
(3)点P在抛物线的对称轴上,连接PB,PC,若△PBC的面积为4,求点P的坐标.
【答案】(1)A、B两点坐标为(﹣1,0)和(4,0);(2)直线BC的函数关系式为y=﹣x+4;(3)点P的坐标为(,)或(,).
【解析】
试题分析:(1)令y=0得﹣x2+3x+4=0解得方程的解即为A、B两点坐标;(2)令x=0,解得抛物线y=﹣x2+3x+4与y轴交点C的坐标,设直线BC的函数关系式y=kx+b,解得k和b的值即可得出直线BC的函数关系式; (3)求得抛物线y=﹣x2+3x+4的对称轴,设对称轴与直线BC的交点记为D,求得D点坐标,设点P的坐标,表示出PD,再根据三角形的面积公式得出点P的坐标.
试题解析:
(1)由﹣x2+3x+4=0解得x=﹣1或x=4,
所以A、B两点坐标为(﹣1,0)和(4,0);
(2)抛物线y=﹣x2+3x+4与y轴交点C坐标为(0,4),由(1)得,B(4,0),
设直线BC的函数关系式y=kx+b,
∴ ,
解得,
∴直线BC的函数关系式为y=﹣x+4;
(3)抛物线y=﹣x2+3x+4的对称轴为x= ,
对称轴与直线BC的交点记为D,则D点坐标为(,).
∵点P在抛物线的对称轴上,
∴设点P的坐标为(,m),
∴PD=|m﹣|,
∴S△PBC=OBPD=4.
∴×4×|m﹣|=4,
∴m=或m=.
∴点P的坐标为(,)或(,).
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,将直线l1:y=﹣3x﹣1平移后,得到直线l2:y=﹣3x﹣4,则下列平移方式正确的是( )
A.将l1向左平移1个单位B.将l1向右平移1个单位
C.将l1向上平移2个单位D.将l1向上平移1个单位
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成4 个小长方形,然后按图2的形状拼成一个正方形.
(1)图2中阴影部分的面积为 ;
(2)观察图2,请你写出式子(m+n)2,(m-n)2,mn之间的等量关系: ;
(3)若x+y=-6,xy=2.75,求x-y的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,表示甲、乙两人沿同一条路长跑,两人的行程y(千米)与时间x(时)变化的图象(全程)如图所示,根据图象回答问题:
(1)乙的速度为千米/小时;两人是否同时到达终点(填“是”或“不是”);
(2)甲第一段的速度为千米/时;第二段的速度为千米/时;
(3)b、c表示的数字分别为、;
(4)若两人在相遇后1小时乙到达终点,则a表示的数字为;甲的行程是千米,乙的行程是千米.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com