【题目】如图,∠AOB=20°,M,N分別是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠OQN=β,当MP+PQ+QN最小时,则关于α,β的数量关系正确的是( )
A.β﹣α=30°B.β﹣α=40°C.β+α=180°D.β+α=200°
【答案】D
【解析】
作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA于Q,交OB于P,可得MP+PQ+QN最小,根据轴对称的性质可得∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,根据三角形内角和及外角性质即可得答案.
如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA于Q,交OB于P,
∴NQ=NQ′,PM=PM′,∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,
∴MP+PQ+QN最小,
∵∠OQN=180°﹣20°﹣∠ONQ,∠OPM=∠NPQ=20°+∠OQP,∠OQP=∠AQN=20°+∠ONQ,
∴α+β=180°﹣20°﹣∠ONQ+20°+20°+∠ONQ=200°.
故选:D.
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD,∠BED=61°,∠ABE的平分线与∠CDE的平分线交于点F,则∠DFB=( )
A. 149° B. 149.5° C. 150° D. 150.5°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化。某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A,B,C,D四个等级,并对调查结果分析后绘制了如下两幅图不完整的统计图。请你根据图中提供的信息完成下列问题:
(1)求被调查学生的人数,并将条形统计图补充完整;
(2)求扇形统计图中的A等对应的扇形圆心角的度数;
(3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A等的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB>∠ABC,三条内角平分线AD,BE,CF相交于点I.
(1)若∠ABE=25°,求∠DIC的度数;
(2)在(1)的条件下,图中互余的角有多少对?列举出来;
(3)过I点作IH⊥BC,垂足为H,试问∠BID与∠HIC相等吗?为什么?
(4)G是AD延长线上一点,过G点作GP⊥BC,垂足为P,试探究∠G与∠ABC,∠ACB之间的数量关系,直接写出结论,不需证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC于点E,l1与l2相交于点O,连接AD,AE,△ADE的周长为12cm.
(1)求BC的长;
(2)分别连接OA,OB,OC,若△OBC的周长为26cm,求OA的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,DB∥AC,且DB=AC,E是AC的中点.
(1)求证:BC=DE;
(2)连接AD、BE,若∠BAC=∠C,求证:四边形DBEA是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的文字,解答问题:
大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用-1来表示的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.
又例如:∵,即,
∴的整数部分为2,小数部分为(-2).
请解答:(1) 的整数部分是 ,小数部分是 .
(2)如果的小数部分为a, 的整数部分为b,求a+b-的值;
(3)已知: 10+=x+y,其中x是整数,且0<y<1,求x-y的相反数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.
(1)求证:AD=AG;
(2)AD与AG的位置关系如何,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com