精英家教网 > 初中数学 > 题目详情

【题目】2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化。某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A,B,C,D四个等级,并对调查结果分析后绘制了如下两幅图不完整的统计图。请你根据图中提供的信息完成下列问题:

(1)求被调查学生的人数,并将条形统计图补充完整;

(2)求扇形统计图中的A等对应的扇形圆心角的度数;

(3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A等的学生有多少人?

【答案】(1)图见解析;(2)126°;(3)525.

【解析】

(1)利用被调查学生的人数=了解程度达到B等的学生数÷所占比例,即可得出被调查学生的人数,由了解程度达到C等占到的比例可求出了解程度达到C等的学生数,再利用了解程度达到A等的学生数=被调查学生的人数-了解程度达到B等的学生数-了解程度达到C等的学生数-了解程度达到D等的学生数可求出了解程度达到A等的学生数,依此数据即可将条形统计图补充完整;

(2)根据A等对应的扇形圆心角的度数=了解程度达到A等的学生数÷被调查学生的人数×360°,即可求出结论;

(3)利用该校现有学生数×了解程度达到A等的学生所占比例,即可得出结论.

(1)48÷40%=120(人),

120×15%=18(人),

120-48-18-12=42(人).

将条形统计图补充完整,如图所示.

(2)42÷120×100%×360°=126°.

答:扇形统计图中的A等对应的扇形圆心角为126°.

(3)1500×=525(人).

答:该校学生对政策内容了解程度达到A等的学生有525人.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】优秀传统文化进校园活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).

请解答下列问题:

(1)请补全条形统计图和扇形统计图;

(2)在参加剪纸活动项目的学生中,男生所占的百分比是多少?

(3)若该校七年级学生共有500人,请估计其中参加书法项目活动的有多少人?

(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加器乐活动项目的女生的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小强家有一块三角形菜地,量得两边长分别为,第三边上的高为.请你帮小强计算这块菜地的面积.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上,李老师出示了如下框中的题目.

小敏与同桌小聪讨论后,进行了如下解答:

1)特殊情况,探索结论:当点EAB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE   DB(填).

2)特例启发,解决问题:解:题目中,AEDB的大小关系是:AE   DB(填).理由如下:如图2,过点EEFBC,交AC于点F,(请你完成以下解答过程)

3)拓展结论,设计新题:在等边三角形ABC中,点EAB的延长线上,点D在直线BC上,且EDEC.若ABC的边长为2AE3,求CD的长.(请画出符合题意的图形,并直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①②,试研究其中∠12与∠34之间的数量关系;

(2)如果我们把∠12称为四边形的外角,那么请你用文字描述上述的关系式;

(3)用你发现的结论解决下列问题:

如图,AEDE分别是四边形ABCD的外角∠NADMDA的平分线,B+C=240°,求∠E的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.

(1)求证:BE=CE

(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)

①求证:△BEM≌△CEN;

②若AB=2,求△BMN面积的最大值;

③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB20°MN分別是边OAOB上的定点,PQ分别是边OBOA上的动点,记∠OPMα,∠OQNβ,当MP+PQ+QN最小时,则关于αβ的数量关系正确的是( )

A.βα30°B.βα40°C.β+α180°D.β+α200°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】张老师买了一套带有屋顶花园的住房,为了美化居住环境,张老师准备用100元钱买4株月季花,2株黄果兰种在花园中.已知3株月季花、4株黄果兰共需158元,2株月季花、3株黄果兰共需117元.问:张老师用100元钱能否买回他所需要的花卉?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C为线段BD上一动点,分别过点BDABBDEDBD,连接ACEC.已知AB=2DE=1BD=8,设CD=x

1)用含x的代数式表示AC+CE的长;

2)请问点C满足什么条件时,AC+CE的值最小;

3)根据(2)中的规律和结论,请构图求出代数式的最小值.

查看答案和解析>>

同步练习册答案