精英家教网 > 初中数学 > 题目详情

【题目】如图,C为线段BD上一动点,分别过点BDABBDEDBD,连接ACEC.已知AB=2DE=1BD=8,设CD=x

1)用含x的代数式表示AC+CE的长;

2)请问点C满足什么条件时,AC+CE的值最小;

3)根据(2)中的规律和结论,请构图求出代数式的最小值.

【答案】1;(2ACE三点共线;(313.

【解析】

1)由于△ABC和△CDE都是直角三角形,故ACCE可由勾股定理求得;

2)若点C不在AE的连线上,根据三角形中任意两边之和>第三边知,AC+CEAE,故当ACE三点共线时,AC+CE的值最小;

3)由(1)(2)的结果可作BD=12,过点BABBD,过点DEDBD,使AB=2ED=3,连接AEBD于点C,则AE的长即为代数式的最小值,然后构造矩形AFDBRtAFE,利用矩形的直角三角形的性质可求得AE的值.

解:(1)设CD=x则BC=8-x

AC=CE=

AC+CE=+

2)由两点之间线段最短可知,当ACE三点共线时,AC+CE的值最小;

3)如右图所示

BD=12,过点BABBD,过点DEDBD,使AB=2ED=3,连接AEBD于点C,设BC=x,则AE的长即为代数的最小值.

过点AAFBDED的延长线于点F,得矩形ABDF

AB=DF=2AF=BD=12EF=ED+DF=3+2=5

所以AE===13

的最小值为13

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在等腰△ABC中,三边分别为a、b、c,其中 ,若关于x的方程 有两个相等的实数根,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据下列条件不能判断△ABC是直角三角形的是( )
A.∠B=50° ,∠C=40°
B.∠B=∠C=45°
C.∠A,∠B,∠C的度数比为5:3:2
D.∠A-∠B=90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个三角形两边中点的连线叫做这个三角形的中位线.只要顺次连结三角形三条中位线,则可将原三角形分割为四个全等的小三角形(如图(1));把三条边分成三等份,再按照图(2)将分点连起来,可以看作将整个三角形分成9个全等的小三角形;把三条边分成四等份,…,按照这种方式分下去,第n个图形中应该得到( )个全等的小三角形.

A.
B.
C.
D.(n+1)2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新春佳节来临,某公司组织10辆汽车装运苹果、芦柑、香梨三种水果共60吨去外地销售,要求10辆汽车全部装满,每辆汽车只能装运同一种水果,且装运每种水果的车辆都不少于2辆,根据下表提供的信息,解答以下问题:

苹果

芦柑

香梨

每辆汽车载货量

7

6

5

每车水果获利

2500

3000

2000

设装运苹果的车辆为x辆,装运芦柑的车辆为y辆,求yx之间的函数关系式,并直接写出x的取值范围

w来表示销售获得的利润,那么怎样安排车辆能使此次销售获利最大?并求出w的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=60°,BC=2,CD△ABC的一条高线.若E,F分别是CDBC上的动点,则BE+EF的最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】港珠澳大桥是世界最长的跨海大桥,连接香港大屿山、澳门半岛和广东省珠海市,其中珠海站到香港站全长约55千米,20181024日上午9时正式通车.一辆观光巴士自珠海站出发,25分钟后,一辆小汽车从同一地点出发,结果同时到达香港站.已知小汽车的速度是观光巴士的1.6倍,求观光巴士的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于结论:当a+b0时,a3+b30也成立.若将a看成a3的立方根,b看成b3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两个数也互为相反数”

1)举一个具体的例子来判断上述结论是否成立;

2)若互为相反数,且x+5的平方根是它本身,求x+y的立方根.

查看答案和解析>>

同步练习册答案