【题目】甲、乙两人分别安装同一种零件40个,其中乙在安装两小时后休息了2小时,后继续按原来进度工作,他们每人安装的零件总数y(个)与安装时间x(小时)的函数关系如图1所示,两人安装零件总数之差z(件)与时间x(小时)的函数关系如图2所示.
(1)a= ;b= .
(2)求出甲工作2小时后的安装的零件数y与时间x的函数关系.
(3)甲、乙两人在什么时间生产的零件总数相差8个?
【答案】(1)4; 10;(2)y=6x﹣8(2<x≤8);(3)6小时或8.4小时.
【解析】
(1)根据图象易得a的值;图1可知4小时后,甲一直保持领先,比乙先完成,所以只有当乙也完成任务时,两人安装零件总数之差才会为0,根据乙的工作效率即可求得b的值;
(2)根据图象求出甲在2小时后的图象经过点和点,用待定系数法即可得;
(3)根据图象,两人在4小时后生产的零件总数相差才达到8个,再根据甲、乙的工作效率,需分在甲完成任务之前和甲完成任务之后两种情况分析,列出等式求解即可.
(1)由图可得:,
图1可知4小时后,甲一直保持领先,比乙先完成,所以只有当乙也完成任务时,两人安装零件总数之差才会为0,乙的工作效率为件/小时,
则;
(2)根据4小时两人安装零件总数之差可得,4小时甲安装的零件总数为件,
设甲工作2小时后的安装的零件数y与时间x的函数关系是,
∵甲工作2小时后的安装的零件数y与时间x的函数图象过点和点,
代入得,解得,
令得,解得,
故甲工作2小时后的安装的零件数y与时间x的函数关系是;
(3)设t小时甲、乙两人生产的零件总数相差8个,
由图2得,
2小时后甲的工作效率为:件/小时,
①在甲完成之前,即时,
解得;
②在甲完成之后,即时,,
解得
答:甲、乙两人在6小时或8.4小时时生产的零件总数相差8个.
科目:初中数学 来源: 题型:
【题目】计算下列各式,然后回答问题
(x+4)(x+3)=
(x+4)(x-3)=
(x-4)(x+3)=
(x-4)(x-3)=
(1)有上面各式总结规律:一般地,(x+p)(x+q)=
(2)运用上述规律,直接写出下式的结果:(x-199)(x+201)=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为养成学生课外阅读的习惯,各学校普遍开展了“我的梦.中国梦”课外阅读活动.某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:
(1)表中 a= ,b= ;
(2)请补全频数分布直方图中空缺的部分;
(3)样本中,学生日阅读所用时间的中位数落在第 组;
(4)请估计该校七年级学生日阅读量不足 1 小时的人数.
组别 | 时间段(小时) | 频数 | 频率 |
1 | 0≤x<0.5 | 10 | 0.05 |
2 | 0.5≤x<1.0 | 20 | 0.10 |
3 | 1.0≤x<1.5 | 80 | b |
4 | 1.5≤x<2.0 | a | 0.35 |
5 | 2.0≤x<2.5 | 12 | 0.06 |
6 | 2.5≤x<3.0 | 8 | 0.04 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为,两车之间的距离为,图中的折线表示与之间的函数关系,根据图象进行一下探究:
信息读取(1)甲、乙两地之间的距离为______:
(2)请解释图中点的实际意义:_______
图象理解(3)求慢车和快车的速度:
(4)求线段所表示的与之间的函数关系式,并写出自变量的取值范围:
问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同,在第一列快车与慢车相遇分钟后,第二列快车与慢车相遇,求第二列快车比第一列快车晚出发多少小时?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分9分)如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.
(1)求证:AD平分∠BAC;
(2)若∠BAC = 60°,OA = 2,求阴影部分的面积(结果保留).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一木质圆柱笔筒的高为9cm,底面半径为2cm,现要围绕笔筒的表面由A到A1(A,A1在圆柱的同一轴截面上)镶上一条银色金属线作为装饰,则这条金属线的最短长度是_________cm.(π取3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如下图所示,直线y=-x+3与坐标轴分别交于点A,B,与直线y=x交于点C,线段OA上的点Q以每秒1个单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连结CQ.
(1)求出点C的坐标;
(2)若△OQC是等腰直角三角形,则t的值为________;
(3)若CQ平分△OAC的面积,求直线CQ对应的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用直尺和圆规作一个角等于已知角的示意图,如图所示,则说明∠A′O′B′=∠AOB的依据是全等三角形的_____相等.其全等的依据是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com