精英家教网 > 初中数学 > 题目详情

【题目】如图,有一木质圆柱笔筒的高为9cm,底面半径为2cm,现要围绕笔筒的表面由AA1(A,A1在圆柱的同一轴截面上)镶上一条银色金属线作为装饰,则这条金属线的最短长度是_________cm.(π取3)

【答案】15

【解析】

这道题主要考查的是几何体的展开图,灵活运用圆柱的侧面展开图是矩形和两点之间线段最短,是解决本题的关键.立体图形中的最短距离,通常要转换为平面图形的两点间的线段长来进行解决.

1、这是一道利用圆柱的展开图解决问题的题目,圆柱的侧面展开图是长方形;

2、可沿母线 将圆柱展开得一个长方形,长方形的长是圆柱的底面周长,宽是圆柱的高;

3、要围绕笔筒的表面由AA1,根据两点之间线段最短即可解答此题.

解:根据图示,展开图对角线的长度就是这条金属线的最短长度,

故答案为:15.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等腰RtABC 中,∠BAC=90°,在BC上截取BD=BA,作∠ABC的平分线与AD相交于点P,连接PC,若ABC的面积为8cm2,则BPC的面积为(

A. 4cm2 B. 5cm2 C. 6cm2 D. 7cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图抛物线 y ax2 2a(x a<0)位于 x 轴上方的图象记为F1它与 x 轴交于 P1、O 两点,图象 F2F1关于原点 O 对称, F2 x 轴的另一个交点为 P2 , F1 将与 F2 同时沿 x 轴向右平移 P1 P2 的长度即可得到F3F4 ;再将 F3F4 同时沿 x 轴向右平移 P1 P2 的长度即可得到 F5F6 ;…;按这样的方式一直平移下去即可得到一系列图象 F1,F2,,Fn .我们把这组图象称为波浪抛物线”.

(1) a=﹣1 时,

①求 F1 图象的顶点坐标;

②点 H(2014,﹣3) (填不在”)波浪抛物线上;若图象 F n的顶点 T n的横坐标为201,则图象 F n对应的解析式为 其自变量 x 的取值范围为 .

(2)设图象 Fn、Fn+1 的顶点分别为 Tn、Tn+1 (n 为正整数),x 轴上一点 Q 的坐标为(12,0).试探究: a 为何值时,以 O、 Tn、Tn+1 、Q 四点为顶点的四边形为矩形?并直接写出此时 n 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲车从A地到B地,乙车从B地到A地,乙车先出发先到达,甲乙两车之间的距离y(千米)与行驶的时间x(小时)的函数关系如图所示,则下列说法中不正确的是(  )

A.甲车的速度是80km/hB.乙车的速度是60km/h

C.甲车出发1h与乙车相遇D.乙车到达目的地时甲车离 B10km

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人分别安装同一种零件40个,其中乙在安装两小时后休息了2小时,后继续按原来进度工作,他们每人安装的零件总数y(个)与安装时间x(小时)的函数关系如图1所示,两人安装零件总数之差z(件)与时间x(小时)的函数关系如图2所示.

1a   b   

2)求出甲工作2小时后的安装的零件数y与时间x的函数关系.

3)甲、乙两人在什么时间生产的零件总数相差8个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,EAB上一点,FAD延长线上一点,且DF=BE

1)求证:CE=CF

2)若点GAD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=50 cm,BC=40 cm,∠C=90°,点P从点A开始沿AC边向点C以2 cm/s的速度匀速移动,同时另一点Q从点C开始以3 cm/s的速度沿着射线CB匀速移动,当△PCQ的面积等于300 cm2时,运动时间为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1中是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,从侧面看图2,立柱DE1.7m,AD0.3m,踏板静止时从侧面看与AE上点B重合,BE0.2m,当踏板旋转到C处时,测得∠CAB=42°,求此时点C距离地面EF的高度.(结果精确到0.1m)(参考数据:sin42°=0.67,cos42°=0.74,tan42°=0.90)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长度为1个单位长度的小正方形组成的正方形中,点ABC在小正方形的顶点上.

1)在图中画出与ABC关于直线l成轴对称的ABC

2)三角形ABC的面积为   

3)在直线l上找一点P,使PA+PB的长最短.

查看答案和解析>>

同步练习册答案