精英家教网 > 初中数学 > 题目详情

【题目】用直尺和圆规作一个角等于已知角的示意图,如图所示,则说明∠AOB′=∠AOB的依据是全等三角形的_____相等.其全等的依据是_____

【答案】对应角; SSS

【解析】

首先连接CDC′D′,从作图可知ODOD′OCOC′CDC′D′,即可判定△ODC≌△O′D′C′SSS),然后根据全等三角形对应角相等的性质,即可得出∠A′O′B′=∠AOB.

AOB=∠AOB

理由是:连接CDC′D′

从作图可知ODOD′OCOC′CDC′D′

∵在△ODC和△O′D′C′

∴△ODC≌△O′D′C′SSS),

∴∠A′O′B′=∠AOB(全等三角形的对应角相等),

故答案为:对应角,SSS

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两人分别安装同一种零件40个,其中乙在安装两小时后休息了2小时,后继续按原来进度工作,他们每人安装的零件总数y(个)与安装时间x(小时)的函数关系如图1所示,两人安装零件总数之差z(件)与时间x(小时)的函数关系如图2所示.

1a   b   

2)求出甲工作2小时后的安装的零件数y与时间x的函数关系.

3)甲、乙两人在什么时间生产的零件总数相差8个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格中,每个小正方形的边长都为1,点、点在网格中的位置如图所示.

(1)建立适当的平面直角坐标系,使点、点的坐标分别为

(2)的坐标为,在平面直角坐标系中标出点的位置,连接

(3)各项点的横坐标不变,纵坐标均乘以在图中做出对应图形

(4)的位置关系为______的面积为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上,李老师出示了如下框中的题目.

在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图.试确定线段AE与DB的大小关系,并说明理由.

小敏与同桌小聪讨论后,进行了如下解答:

(1)特殊情况,探索结论

当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:

AE DB(填“>”,“<”或“=”).

图1 2

(2)特例启发,解答题目

解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).

理由如下:如图2,过点E作EFBC,交AC于点F.

(请你完成以下解答过程)

(3)拓展结论,设计新题

在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若ABC的边长为1,AE=2,求CD的长(请你直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形为正方形,上任意一点,连接,过,交,过,交,在线段上作,连接,其中点,上一点,连接,若,求的值为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长度为1个单位长度的小正方形组成的正方形中,点ABC在小正方形的顶点上.

1)在图中画出与ABC关于直线l成轴对称的ABC

2)三角形ABC的面积为   

3)在直线l上找一点P,使PA+PB的长最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,设在一个宽度为w的小巷内,一个梯子长为a,梯子的脚位于A点,将梯子的顶端放在一堵墙上Q点时,Q离开地面的高度为k,梯子与地面的夹角为45°:将该梯子的顶端放在另一堵墙上R点时,R点离开地面的高度为h,且此时梯子与地面的夹角为75°,则小巷宽度w=

A.hB.kC.aD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=4cm,∠BAD=60°.动点E、F分别从点B、D同时出发,以1cm/s的速度向点A、C运动,连接AF、CE,取AF、CE的中点G、H,连接GE、FH.设运动的时间为ts(0<t<4).

(1)求证:AF∥CE;

(2)当t为何值时,四边形EHFG为菱形;

(3)试探究:是否存在某个时刻t,使四边形EHFG为矩形,若存在,求出t的值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,DE∥BC,EF∥AB,若S△ADE=16cm2,S△EFC=49cm2求①,②S△ABC

查看答案和解析>>

同步练习册答案