精英家教网 > 初中数学 > 题目详情
阅读下面材料:
小炎遇到这样一个问题:如图1,点E、F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连结EF,则EF=BE+DF,试说明理由.
小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).
参考小炎同学思考问题的方法,解决下列问题:
(1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足_       关系时,仍有EF=BE+DF;
(2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1, EC=2,求DE的长.
(1)∠B+∠D=180°(或互补);(2)

试题分析:(1)如图,△ABE绕着点A逆时针旋转90°得到△ADG,利用全等的知识可知,要使EF=BE+DF,即EF=DG+DF,即要F、D、G三点共线,即∠ADG+∠ADF=180°,即∠B+∠D=180°.

(2) 把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合,通过证明△AEG≌△AED得到DE=EG,由勾股定理即可求得DE的长.
(1)∠B+∠D=180°(或互补).
(2)∵ AB=AC,
∴ 把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合.
则∠B=∠ACG,BD=CG,AD=AG.
∵在△ABC中,∠BAC=90°,
∴∠ACB+∠ACG=∠ACB+∠B=90°于,即∠ECG=90°.
∴ EC2+CG2=EG2
在△AEG与△AED中,
∠EAG=∠EAC+∠CAG=∠EAC+∠BAD=90°-∠EAD=45°=∠EAD.
又∵AD=AG,AE=AE,
∴△AEG≌△AED .
∴DE=EG.
又∵CG=BD,
∴ BD2+EC2=DE2

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠B=400,∠C=1100

(1)画出下列图形:
①BC边上的高AD;②∠A的角平分线AE.
(2)试求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在△ABC中,∠A:∠B:∠C=1:2:3,则∠A=    度,∠C=    度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,BC >AC,点D在BC上,且CA=CD,∠ACB的平分线交AD于点F,E是AB的中点.
(1)求证:EF∥BD ;
(2)若∠ACB=60°,AC=8,BC=12,求四边形BDFE的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(10分)晓丽的家住在D处,每天她要送女儿到正东方向,距离家2500米外的幼儿园B处,然后沿原路返回到离家正西1500米C处上班,晓丽的工作单位的正北方向上有一家超市A.恰好晓丽家所在点D在公路AB、AC夹角的平分线上,你能求出晓丽的工作单位距离超市A有多远吗?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知的三边长分别是6cm、8cm、10cm,则的面积是(   )
A.24B.30C.40D.48

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,ΔABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D、E两点,并连接BD、DE.若∠A=30°,AB=AC,则∠BDE的度数为

A.67.5°          B.52.5°          C.45°           D.75°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,,点都是矩形的边上,则矩形的面积为(    )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知边长为5的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且ED⊥BC,则CE的长是(  )
A.10-15B.10-5
C.5-5 D.20-10

查看答案和解析>>

同步练习册答案