【题目】如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C,D不重合).
(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是 ;
(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=AD,请给出证明;
(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.
【答案】(1)DE+DF=AD;(2)证明见试题解析;(3)①当点E落在AD上时,DE+DF=AD,②当点E落在AD的延长线上时,DF-DE =AD.
【解析】
试题分析:(1)证明△APE≌△DPF,得到AE=DF,即可得出结论DE+DF=AD,
(2)取AD的中点M,连接PM,可证明△MDP是等边三角形,△MPE≌△FPD,得到ME=DF,由DE+ME=AD,即可得出DE+DF=AD,
(3)①当点E落在AD上时,DE+DF=AD,②当点E落在AD的延长线上时,DF-DE =AD.
试题解析:(1)正方形ABCD的对角线AC,BD交于点P,∴PA=PD,∠PAE=∠PDF=45°,∵∠APE+∠EPD=∠DPF+∠EPD=90°,∴∠APE=∠DPF,在△APE和△DPF中,∵∠APE=∠DPF,PA=PD,∠PAE=∠PDF,∴△APE≌△DPF(ASA),∴AE=DF,∴DE+DF=AD,
(2)如图②,取AD的中点M,连接PM,∵四边形ABCD为∠ADC=120°的菱形,∴BD=AD,∠DAP=30°,∠ADP=∠CDP=60°,∴△MDP是等边三角形,∴PM=PD,∠PME=∠PDF=60°,∵∠PAM=30°,∴∠MPD=60°,∵∠QPN=60°,∴∠MPE=∠FPD,在△MPE和△FPD中,∵∠PME=∠PDF,PM=PD,∠MPE=∠FPD,∴△MPE≌△FPD(ASA),∴ME=DF,∴DE+DF=AD;
(3)如图,在整个运动变化过程中,①当点E落在AD上时,DE+DF=AD,
②当点E落在AD的延长线上时,DF-DE =AD.
(如图3,取AD中点M,连接PM,证明△MPE≌△DPF)
科目:初中数学 来源: 题型:
【题目】今年我市参加中考的人数大约有41300人,将41300用科学记数法表示为( )
A.413×102
B.41.3×103
C.4.13×104
D.0.413×103
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题
如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°,求证:ADBC=APBP.
(2)探究
如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.
(3)应用
请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5,点P以每秒1个单位长度的速度,由点A出了,沿边AB向点B运动,且满足∠DPC=∠A,设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某学校全体教职工年龄的频数分布直方图(每组年龄包含最小值,不包含最大值),根据图形提供的信息,下列说法中错误的是( )
A.该学校教职工总人数是50人
B.这一组年龄在40≤x<42小组的教职工人数占该学校全体教职工总人数的20%
C.教职工年龄的中位数一定落在40≤x<42这一组
D.教职工年龄的众数一定在38≤x<40这一组
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 延长线段AB和延长线段BA的含义相同
B. 射线AB和射线BA是同一条射线
C. 经过两点可以画一条直线,并且只能画一条直线
D. 延长直线AB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于平行四边形ABCD的叙述,正确的是( )
A. 若AB⊥BC,则平行四边形ABCD是菱形 B. 若AC⊥BD,则平行四边形ABCD是正方形
C. 若AC=BD,则平行四边形ABCD是矩形 D. 若AB=AD,则平行四边形ABCD是正方形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某次考试中,某班级的数学成绩统计图如下.下列说法错误的是( )
A.得分在70~80分之间的人数最多
B.该班的总人数为40
C.得分在90~100分之间的人数最少
D.及格(≥60分)人数是26
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,点D,E,F分别在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.
(1)如图1,当DE=DF时,图1中是否存在与AB相等的线段?若存在,请找出,并加以证明;若不存在,说明理由;
(2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90°,AF=m,求BD的长(用含k,m的式子表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com