对一张矩形纸片ABCD进行折叠,具体操作如下:
第一步:先对折,使AD与BC重合,得到折痕MN,展开;
第二步:再一次折叠,使点A落在MN上的点处,并使折痕经过点B,得到折痕BE,同时,得到线段,,展开,如图1;
第三步:再沿所在的直线折叠,点B落在AD上的点处,得到折痕EF,同时得到线段,展开,如图2.
求∠ABE的度数.
科目:初中数学 来源: 题型:
小明和小颖本学期数学平时成绩、期中成绩、期末成绩分别如下:
平时 | 期中 | 期末 | |
小明 | 85 | 90 | 92 |
小颖 | 90 | 83 | 88 |
假如学期总评按平时成绩、期中成绩、期末成绩各占1∶3∶6的比例来计算,那么小明和小颖的学期总评成绩谁较高?
查看答案和解析>>
科目:初中数学 来源: 题型:
如图所示,若在某棋盘上建立直角坐标系,使“将”位于
点(1,-2),“象”位于点(3,-2),则“炮”位于点( )
A.(1,3) B.(-2,1) C.(-1,2) D.(-2,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2) 如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3) 拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com