【题目】如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC于D,AE平分∠BAD,交BC于E,在△ABC外有一点F,使FA⊥AE,FC⊥BC.
(1)求证:BE=CF;
(2)在AB上取一点M,使得BM=2DE,连接ME
①求证:ME⊥BC;
②求∠EMC的度数.
【答案】(1)证明见解析;(2)①证明见解析;②67.5°
【解析】
试题(1)由等腰直角三角形的性质可知∠ABC=∠ACB=45°,由FC⊥BC可知∠ACF=45°,从而得出∠ABE=∠ACF;由∠BAE、∠CAF均为∠EAC的余角可得出∠BAE=∠CAF,结合AB=AC即可得出△ABE≌△ACF,根据全等三角形的性质即可得出结论;
(2)①过点E作EQ⊥AB于点Q,由△AEQ≌△AED可得出QE=DE;根据∠BQE=90°和∠QBE=45°可得出∠BEQ=45°、BQ=QE,再由BE=2DE=2QE即可得出∠QEC=45°,由此可得出∠BEM=90°,即ME⊥BC;
②设DE=a,则BM=2a,根据等腰直角三角形的性质可用含a的代数式表示AB和BD,由边与边的关系可得出AM=ME,结合MC=MC可证得Rt△MAC≌Rt△MEC,即∠EMC=∠AMC,再根据角与角的关系即可得出结论.
试题解析:(1)∵△ABC中,∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵FC⊥BC,
∴∠ACF+∠ACB=90°,
∴∠ACF=45°=∠ABE.
∵∠BAC=90°,FA⊥AE,
∴∠BAE+∠EAC=90°=∠CAF+∠EAC,
∴∠BAE=∠CAF.
在△ABE和△ACF中,
,
∴△ABE≌△ACF(ASA),
∴BE=CF.
(2)①过点E作EQ⊥AB于点Q,如图所示.
∵AE平分∠BAD,
∴∠QAE=∠DAE,
在△AEQ和△AED中,
,
∴△AEQ≌△AED(AAS),
∴QE=DE.
∵∠BQE=90°,∠QBE=45°,
∴∠BEQ=45°,
∴BQ=QE,
又∵BM=2DE=QE,
∴QM=QE,
∴∠QEM=∠QME==45°,
∴∠BEM=∠BEQ+∠QEM=90°,
∴ME⊥BC.
②设DE=a,则BM=2a.
∵△BEM为等腰直角三角形,
∴BE=EM=BM=a,
∴BD=BE+DE=(+1)a.
∵△ABC为等腰直角三角形,AD⊥BC,
∴AB=BD=×(+1)a=(2+)a,
∵BM=2a,
∴AM=(2+)a﹣2a=a,
∴AM=EM.
在Rt△MAC和Rt△MEC中, ,
∴Rt△MAC≌Rt△MEC(HL),
∴∠EMC=∠AMC,
又∵∠BME=45°,
∴∠EMC=(180°﹣45°)=67.5°.
科目:初中数学 来源: 题型:
【题目】已知反比例函数y= ,在下列结论中,不正确的是( )
A.图象必经过点(1,2)
B.y随x的增大而减少
C.图象在第一、三象限
D.若x>1,则y<2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(0,6),B(8,0).点P从A点出发,以每秒1个单位的速度沿AO运动;同时,点Q从O出发,以每秒2个单位的速度沿OB运动,当Q点到达B点时,P、Q两点同时停止运动.
(1)求运动时间t的取值范围;
(2)t为何值时,△POQ的面积最大?最大值是多少?
(3)t为何值时,以点P、0、Q为顶点的三角形与Rt△AOB相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).
(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标;
(2)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠ABC=90°, D是直线AB上的点,AD=BC ,过点A作AF⊥AB,并截取AF=DB ,连接DC、DF、CF ,判断△CDF的形状并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠ACB=90°,AC=BC,CD为AB边上的中线,点E、F分别在AC、BC边上,且ED⊥DF.
(1)求证:△CDE≌△BDF;
(2)如图2,作EG⊥AB于G,FH⊥AB于H,求证:EG+FH=CD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com