精英家教网 > 初中数学 > 题目详情

【题目】“十一”黄金周期间,深圳世界之窗风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):

日期

1日

2日

3日

4日

5日

6日

7日

人数变化

单位:万人

+1.6

+0.8

+0.4

﹣0.4

﹣0.8

+0.2

﹣1.2

(1)请判断七天内游客人数最多的是   日,最少的是   日.

(2)以9月30日的游客人数为0点,用折线统计图表示这7天的游客人数的变化情况.

【答案】(1)3,7 (2)答案见解析

【解析】

(1)根据统计表分别计算出每天的人数,即可作出判断;(2)根据(1)中计算出每天的人数可以画出折线图.

(1)由表知1日的人数为1.6万人,2日人数为2.4万人,3日人数为2.8万人,4日人数为2.4万人,

5日人数为1.6万人,6日人数为1.8万人,7日人数为0.6万人;

所以七天内游客人数最多的是3日,最少的7日,

故答案为:3,7;

(2)以9月30日的游客人数为0点,用折线统计图表示这7天的游客人数的变化情况如下:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知∠1=2AC=AD,请增加一个条件,使ABC≌△AED,你添加的条件是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC,AD=4,BC=12,点EBC的中点.点P、Q分别是边AD、BC上的两点,其中点P以每秒个1单位长度的速度从点A运动到点D后再返回点A,同时点Q以每秒2个单位长度的速度从点C出发向点B运动.当其中一点到达终点时停止运动.当运动时间t_____秒时,以点A、P,Q,E为顶点的四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在日历上,我们可以发现其中某些数满足一定的规律,如图是201712月份的日历.如图所选择的两组四个数,分别将每组数中相对的两数相乘,再相减,例如:7×9﹣1×15= 18×20﹣12×26= ,不难发现,结果都是

1请将上面三个空补充完整;

2)我们发现选择其他类似的部分规律也相同,请你利用整式的运算对以上的规律加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,已知∠A=80°,∠B=60°,DE∥BC,那么∠CED的大小是(  )
A.40°
B.60°
C.120°
D.140°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C是⊙O上一点,∠BAC的平分线AD交⊙O于点D,过点D垂直于AC的直线交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)如图AD=5,AE=4,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知代数式(mx2+2mx-1)(xm+3nx+2)化简以后是一个四次多项式,并且不含二次项,请分别求出m,n的值,并求出一次项系数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读所给材料再完成后面的问题:

如图①所示,AB∥CD,试说明∠B+∠D=∠BED.

解:过点E作EF∥CD,易知EF∥AB,所以∠DEF=∠D,∠FEB=∠B,所以∠BED=∠FEB+∠DEF=∠B+∠D.若图中点E的位置发生变化,如图②③④所示,则上面问题中的三个角(均小于180°)有何数量关系?写出结论,并选择图②说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,现将一直角三角形PMN放入图中,其中∠P=90°,PMAB于点EPNCD于点F.

(1)当△PMN所放位置如图①所示时,求出∠PFD与∠AEM的数量关系;

(2)当△PMN所放位置如图②所示时,求证:∠PFD-∠AEM=90°;

(3)(2)的条件下,若MNCD交于点O,且∠DON=15°,∠PEB=30°,求∠N的度数.

查看答案和解析>>

同步练习册答案