精英家教网 > 初中数学 > 题目详情

【题目】下列因式分解正确的是(  )

A.x3xxx21B.x2+y2=(x+y)(xy

C.a+4)(a4)=a216D.m2+4m+4=(m+22

【答案】D

【解析】

逐项分解因式,即可作出判断.

A、原式=x(x2﹣1)=x(x+1)(x﹣1),不符合题意;

B、原式不能分解,不符合题意;

C、原式不是分解因式,不符合题意;

D、原式=(m+2)2,符合题意,

故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对两个三角形满足两边和其中一边的对角对应相等的情形进行研究.

【初步思考】

我们不妨将问题用符号语言表示为:在ABCDEF中,AC=DFBC=EFB=E,然后,对∠B进行分类,可分为B是直角、钝角、锐角三种情况进行探究.

【深入探究】

第一种情况:当∠B是直角时,ABC≌△DEF

(1)如图①,在ABCDEFAC=DFBC=EFB=E=90°,根据______,可以知道RtABCRtDEF

第二种情况:当∠B是钝角时,ABC≌△DEF

(2)如图②,在ABCDEFAC=DFBC=EFB=E,且∠BE都是钝角,求证:ABC≌△DEF

第三种情况:当∠B是锐角时,ABCDEF不一定全等.

(3)在ABCDEFAC=DFBC=EFB=E,且∠BE都是锐角,请你用尺规在图③中作出DEF,使DEFABC不全等.(不写作法,保留作图痕迹)

(4)B还要满足什么条件,就可以使ABC≌△DEF?请直接写出结论:在ABCDEF中,AC=DFBC=EFB=E,且∠BE都是锐角,若______,则ABC≌△DEF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】P1(x1,y1),P2(x2,y2)是一次函数y=-3x-4图象上的两个点,且x1x2,y1y2的大小关系是(

A.y1=y2B.y1y2C.y1y2D.y1y20

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一个四边形的纸片一刀剪去一个角后,所得的多边形的内角之和是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于二次函数y=3(x﹣2)2+6,下列说法正确的是(
A.开口方向向下
B.顶点坐标为(﹣2,6)
C.对称轴为y轴
D.图象是一条抛物线

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,BDAC,CEAB,D、E为垂足,BDCE交于点O,则图中全等三角形共有_________对.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=ax2﹣6x+c与x轴交于点A(﹣5,0)、B(﹣1,0),与y轴交于点C(0,﹣5),点P是抛物线上的动点,连接PA、PC,PC与x轴交于点D.

(1)求该抛物线所对应的函数解析式;

(2)若点P的坐标为(﹣2,3),请求出此时△APC的面积;

(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2.

①若∠APE=∠CPE,求证:=

②△APE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE交于另一点F,连接BC.

(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x﹣h)2+k的形式;

(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;

(3)一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?

(4)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中描出下列各组点,并将各组的点用线段依次连接起来.

(1)(1,0),(6,0),(6,1),(5,0),(6,-1),(6,0);

(2)(2,0),(5,3),(4,0);

(3)(2,0),(5,-3),(4,0).

观察所得到的图形像什么?

查看答案和解析>>

同步练习册答案