分析 连结DE,作FH⊥BC于H,如图,根据等边三角形的性质得∠B=60°,过D点作DE′⊥AB,则BE′=$\frac{1}{2}$BD=2,则点E′与点E重合,所以∠BDE=30°,DE=$\sqrt{3}$BE=2 $\sqrt{3}$,接着证明△DPE≌△FDH得到FH=DE=2 $\sqrt{3}$,于是可判断点F运动的路径为一条线段,此线段到BC的距离为2 $\sqrt{3}$,当点P在E点时,作等边三角形DEF1,则DF1⊥BC,当点P在A点时,作等边三角形DAF2,作F2Q⊥BC于Q,则△DF2Q≌△ADE,所以DQ=AE=8,所以F1F2=DQ=8,于是得到当点P从点E运动到点A时,点F运动的路径长为8.
解答 解:如图,∵△ABC为等边三角形,
∴∠B=60°,![]()
过D点作DE′⊥AB,则BE′=$\frac{1}{2}$BD=2,
∴点E′与点E重合,
∴∠BDE=30°,DE=$\sqrt{3}$BE=2 $\sqrt{3}$,
∵△DPF为等边三角形,
∴∠PDF=60°,DP=DF,
∴∠EDP+∠HDF=90°
∵∠HDF+∠DFH=90°,
∴∠EDP=∠DFH,
在△DPE和△FDH中,
$\left\{\begin{array}{l}{∠PED=∠DHF}\\{∠EDP=∠DFH}\\{DP=FD}\end{array}\right.$,
∴△DPE≌△FDH,
∴FH=DE=2 $\sqrt{3}$,
∴点P从点E运动到点A时,点F运动的路径为一条线段,此线段到BC的距离为2 $\sqrt{3}$,
当点P在E点时,作等边三角形DEF1,∠BDF1=30°+60°=90°,则DF1⊥BC,
当点P在A点时,作等边三角形DAF2,作F2Q⊥BC于Q,则△DF2Q≌△ADE,所以DQ=AE=10-2=8,
∴F1F2=DQ=8,
∴当点P从点E运动到点A时,点F运动的路径长为8.
点评 本题考查了全等三角形的判定和性质,轨迹:点运动的路径叫点运动的轨迹,利用代数或几何方法确定点运动的规律.也考查了等边三角形的性质和三角形全等的判定与性质.
科目:初中数学 来源: 题型:选择题
| A. | $\frac{18}{1.25x}$-$\frac{36}{x}$=6 | B. | $\frac{36}{1.25x}$-$\frac{18}{x}$=6 | C. | $\frac{36}{x}$-$\frac{18}{1.25x}$=6 | D. | $\frac{18}{x}$-$\frac{36}{1.25x}$=6 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 由2x-3=4x,得:2x=4x-3 | B. | 由7x-4=3-2x,得:7x+2x=3-4 | ||
| C. | 由$\frac{1}{3}$x-$\frac{1}{2}$=3x+4得-$\frac{1}{2}$-4=3x+$\frac{1}{3}$x | D. | 由3x-4=7x+5得:3x-7x=5+4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com