| A. | 方程无实数根 | B. | 方程有两个不相等的实数根 | ||
| C. | 方程有两个相等的实数根 | D. | 无法判断 |
分析 先根据勾股定理得到a2+b2=c2,再计算出△=4b2-4(c+a)(c-a)=4(b2-c2+a2)=0,于是根据判别式的意义判断方程根的情况.
解答 解:∵a、b、c分别为Rt△ABC(∠C=90°)的三边的长,
∴a2+b2=c2,
∵△=4b2-4(c+a)(c-a)=4(b2-c2+a2),
∴△=0,
∴方程有两个相等的两个实数根.
故选C.
点评 本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了勾股定理.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 70° | B. | 20° | C. | 35° | D. | 110° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | y=2(x-3) | B. | y=2x-3 | C. | y=2x+3 | D. | y=2x |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (a+b)(a-b)=a2-b2 | B. | a2+2ab+b2=(a+b)2 | C. | a(a+b)=a2+ab | D. | (a-b)2=(b-a)2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com