精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在平行四边形ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为7,△FCB的周长为19,求FC的长.

【答案】6

【解析】

由折叠的性质可得EF=AE,BF=AB,由四边形ABCD是平行四边形可得AD=BC,AB=DC,结合△FCB的周长=DF+DE+EF=DF+DE+AE=DF+AD=7△FCB的周长=FC+BC+BF=FC+BC+AB=19可得平行四边形ABCD的周长=26,由此可得AD+DC=13,这样即可由FC=(AD+DC)-(AD+DF)求出FC的长.

∵△BEF是由△BDA沿BE折叠得到的,

∴EF=AE,BF=AB.

平行四边形ABCD,
∴AD=BC,AB=DC.

∵△FDE的周长=DF+DE+EF=7,
∴DF+DE+AE=7,即DF+AD=7.
∵△FCB的周长=FC+BC+BF=19,
∴FC+BC+AB=19,

∴平行四边形ABCD的周长=AD+DF+FC+BC+AB=7+19=26,

∴AD+DC=13,

∴FC=(AD+DC)-(AD+DF)=13-7=6.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知数轴上两点A,B对应的数分别为﹣1、3,点P为数轴上一动点.

(1)若点P到点A、点B的距离相等,写出点P对应的数   

(2)若点P到点A,B的距离之和为6,那么点P对应的数   

(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时P点以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立刻以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC=90°,AB=AC,D是BC上的点.求证:BD2+CD2=2AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:在数学课上,老师提出如下问题:

尺规作图,过圆外一点作圆的切线.
已知:⊙O和点P
求过点P的⊙O的切线

小涵的主要作法如下:

如图,(1)连结OP,作线段OP的中点A;
(2)以A为圆心,OA长为半径作圆,交⊙O于点B,C;
(3)作直线PB和PC.
所以PB和PC就是所求的切线.

老师说:“小涵的做法是正确的.”
请回答:小涵的作图依据是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,E在AC上,AE=2EC,F在AB上,BF=2AF,如果ΔBEF的面积为4cm2,求平行四边形ABCD的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.

(1)求证:DE是⊙O的切线;
(2)若△ABC的边长为4,求EF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,定义点P(x,y)的变换点为P′(x+y,x﹣y).
(1)如图1,如果⊙O的半径为2
①请你判断M(2,0),N(﹣2,﹣1)两个点的变换点与⊙O的位置关系;
②若点P在直线y=x+2上,点P的变换点P′在⊙O的内,求点P横坐标的取值范围.

(2)如图2,如果⊙O的半径为1,且P的变换点P′在直线y=﹣2x+6上,求点P与⊙O上任意一点距离的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ADBC,CEAB,垂足分别为D,E,AD,CE交于点F.请你添加一个适当的条件,使△AEF≌△CEB.添加的条件是____________(写出一个即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若BAC=80°,则BCA的度数为   

查看答案和解析>>

同步练习册答案