精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,定义点P(x,y)的变换点为P′(x+y,x﹣y).
(1)如图1,如果⊙O的半径为2
①请你判断M(2,0),N(﹣2,﹣1)两个点的变换点与⊙O的位置关系;
②若点P在直线y=x+2上,点P的变换点P′在⊙O的内,求点P横坐标的取值范围.

(2)如图2,如果⊙O的半径为1,且P的变换点P′在直线y=﹣2x+6上,求点P与⊙O上任意一点距离的最小值.

【答案】
(1)解:①M(2,0)的变换点M′的坐标为(2,2),则OM′= =2 ,所以点M(2,0)的变换点在⊙O上;

N(﹣2,﹣1)的变换点N′的坐标为(﹣3,﹣1),则ON′= = >2 ,所以点N(﹣2,﹣1)的变换点在⊙O外;

②设P点坐标为(x,x+2),则P点的变换点为P′的坐标为(2x+2,﹣2),则OP′=

∵点P′在⊙O的内,

<2

∴(2x+2)2<4,即(x+1)2<1,

∴﹣1<x+1<1,解得﹣2<x<0,

即点P横坐标的取值范围为﹣2<x<0


(2)解:设点P′的坐标为(x,﹣2x+6),P(m,n),

根据题意得m+n=x,m﹣n=﹣2x+6,

∴3m+n=6,

即n=﹣3m+6,

∴P点坐标为(m,﹣3m+6),

∴点P在直线y=﹣3x+6上,

设直线y=﹣3x+6与x轴相交于点A,与y轴相交于点B,过O点作OH⊥AB于H,交⊙O于C,如图2,

则A(2,0),B(0,6),

∴AB= =2

OHAB= OAOB,

∴OH= =

∴CH= ﹣1,

即点P与⊙O上任意一点距离的最小值为 ﹣1.


【解析】(1)①根据新定义得到点M的变换点M′的坐标为(2,2),于是根据勾股定理计算出OM′=2 ,则根据点与圆的位置关系的判定方法可判断点M的变换点在⊙O上;同样方法可判断点N(﹣2,﹣1)的变换点在⊙O外②利用一次函数图象上点的坐标特征,设P点坐标为(x,x+2),利用新定义得到P点的变换点为P′的坐标为(2x+2,﹣2),则根据勾股定理计算出OP′= ,然后利用点与圆的位置关系得到 <2 ,解不等式得﹣2<x<0;(2)设点P′的坐标为(x,﹣2x+6),P(m,n),根据新定义得到m+n=x,m﹣n=﹣2x+6,消去x得3m+n=6,则n=﹣3m+6,于是得到P点坐标为(m,﹣3m+6),则可判断点P在直线y=﹣3x+6上,设直线y=﹣3x+6与x轴相交于点A,与y轴相交于点B,过O点作OH⊥AB于H,交⊙O于C,如图2,易得A(2,0),B(0,6),利用勾股定理计算出AB=2 ,再利用面积法计算出OH= ,所以CH= ﹣1,当点P在H点时,PC为点P与⊙O上任意一点距离的最小值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,二次函数y1=ax2+bx+3的图像与x轴相交于点A(﹣3,0)、B(1,0),交y轴于点C,C,D是二次函数图像上的一对对称点,一次函数y2=mx+n的图像经过B、D两点.

(1)求二次函数的解析式及点D的坐标;
(2)根据图像写出y2>y1时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠BAC90°ABAC,点DBC的中点,直角∠MDN绕点D旋转,DMDN分别与边ABAC交于EF两点,下列结论:①△DEF是等腰直角三角形;②AECF③△BDE≌△ADFBECFEF,其中正确结论是( )

A. ①②④ B. ②③④

C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平行四边形ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为7,△FCB的周长为19,求FC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.

(1)求证:OE=OF;

(2)若EF⊥AC,平行四边形ABCD的周长是22,求△BEC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近两年,国际市场黄金价格涨幅较大,中国交通银行推出沃德金的理财产品,即以黄金为投资产品,投资者从黄金价格的上涨中赚取利润.上周五黄金的收盘价为/克,下表是本周星期一至星期五黄金价格的变化情况.(注:星期一至星期五开市,星期六、星期日休市)

收盘价的变化(与前一天收盘价比较)

本周星期三黄金的收盘价是多少?

本周黄金收盘时的最高价、最低价分别是多少?

上周,小王以周五的收盘价/克买入黄金克,已知买入与卖出时均需支付成交金额的千分之五的交易费,卖出黄金时需支付成交金额的千分之三的印花税.本周,小王以周五的收盘价全部卖出黄金克,他的收益情况如何?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠DAB=∠CAE,要使△ABC∽△ADE,则补充的一个条件可以是(注:只需写出一个正确答案即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形 ABCD 中, AB = a, BC = b, a > b . AB 边为轴将长方形旋转一周形成 圆柱体甲再以 BC 边为轴将长方形旋转一周形成圆柱体乙.记两个圆柱体的体积分别为 V ,V ,侧面积分别为 S, S ,则下列正确的是( )

A. V > V , S=S

B. V < V , S= S

C. V= V , S= S

D. V > V , S < S

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知动点P在函数x0的图象上运动PMx轴于点MPNy轴于点N线段PMPN分别与直线ABy=x+1交于点EFAFBE的值为(  )

A. 4 B. 2 C. 1 D.

查看答案和解析>>

同步练习册答案