精英家教网 > 初中数学 > 题目详情

【题目】如图,∠DAB=∠CAE,要使△ABC∽△ADE,则补充的一个条件可以是(注:只需写出一个正确答案即可).

【答案】∠B=∠D
【解析】解:根据相似三角形的判定:两角对应相等,两三角形相似;两边对应成比例且夹角相等,两三角形相似.
已知∠DAB=∠CAE,则∠DAE=∠BAC,要使△ABC∽△ADE,则补充的一个条件可以是∠B=∠D或∠AED=∠ACB、AD:AB=AB:AC.
【考点精析】关于本题考查的相似三角形的判定,需要了解相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS)才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是( )

A.把△ABC向右平移6格
B.把△ABC向右平移4格,再向上平移1格
C.把△ABC绕着点A顺时针旋转90°,再向右平移6格
D.把△ABC绕着点A逆时针旋转90°,再向右平移6格

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,E在AC上,AE=2EC,F在AB上,BF=2AF,如果ΔBEF的面积为4cm2,求平行四边形ABCD的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,定义点P(x,y)的变换点为P′(x+y,x﹣y).
(1)如图1,如果⊙O的半径为2
①请你判断M(2,0),N(﹣2,﹣1)两个点的变换点与⊙O的位置关系;
②若点P在直线y=x+2上,点P的变换点P′在⊙O的内,求点P横坐标的取值范围.

(2)如图2,如果⊙O的半径为1,且P的变换点P′在直线y=﹣2x+6上,求点P与⊙O上任意一点距离的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠ADB=ADC,则不一定能使△ABD≌△ACD的条件是(  )

A. AB=AC B. BD=CD C. B=C D. BAD=CAD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ADBC,CEAB,垂足分别为D,E,AD,CE交于点F.请你添加一个适当的条件,使△AEF≌△CEB.添加的条件是____________(写出一个即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心, cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.
(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;

(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠DAE=∠BAF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结 合.研究数轴我们发现了许多重要的规律:若数轴上点 A、点 B 表示的数分别为 a、b,则AB 两点之间的距离 AB= ,线段 AB 的中点表示的数为 .

【问题情境】如图,数轴上点A表示的数为-2,点B表示的数为8,点P从点 A 出发, 以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒 2个单 位长度的速度向左匀速运动,设运动时间为t(t>0).

【综合运用】(1) 填空:

①A、B两点之间的距离AB=__________,线段AB的中点表示的数为_______

②用含t的代数式表示:t秒后,点P表示的数为_______;点Q表示的数为_____.

(2) 求当t为何值时,P、Q 两点相遇,并写出相遇点所表示的数;

(3)求当t为何值时,PQ=AB

(4)若点M为PA的中点,点N为PB的中点,点 P在运动过程中,线段MN的长度是否发 生变化?若变化,请说明理由;若不变,请求出线段MN的长.

查看答案和解析>>

同步练习册答案