【题目】如图,在平面直角坐标系中,矩形OABC的边OA=4,OC=3,且顶点A、C均在坐标轴上,动点M从点A出发,以每秒1个单位长度的速度沿AO向终点O移动;点N从点C出发沿CB向终点B以同样的速度移动,当两个动点运动了x秒(0<x<4)时,过点N作NP⊥BC交BO于点P,连接MP.
(1)直接写出点B的坐标,并求出点P的坐标(用含x的式子表示);
(2)设△OMP的面积为S,求S与x之间的函数表达式;若存在最大值,求出S的最大值;
(3)在两个动点运动的过程中,是否存在某一时刻,使△OMP是等腰三角形?若存在,求出x的值;若不存在,请说明理由.
【答案】(1)B(4,3).P(x, x);(2)S=﹣x2+x(0<x<4), 最大值为;(3)存在,x的值为秒或秒或秒.
【解析】
试题分析:(1)根据矩形OABC中OA=4,OC=3以及矩形的性质,得出B点坐标,再由PG∥AB,得出△OPG∽△OBA,利用相似三角形对应边成比例得出P点坐标;(2)利用PG以及OM的长表示出△OMP的面积,再根据二次函数的性质求出最大值即可;(3)△OMP是等腰三角形时,分三种情况:①PO=PM;②OP=OM;③OM=PM.画出图形,分别求出即可.
试题解析:(1)∵矩形OABC中,OA=4,OC=3,∴B点坐标为(4,3).如图,延长NP,交OA于点G,则PG∥AB,OG=CN=x.∵PG∥AB,∴△OPG∽△OBA,∴,即=,解得:PG=x,∴点P的坐标为(x, x);(2)∵在△OMP中,OM=4﹣x,OM边上的高为x,∴S=(4﹣x)x=﹣x2+x,∴S与x之间的函数表达式为S=﹣x2+x(0<x<4).配方,得S=﹣(x﹣2)2+,∴当x=2时,S有最大值,最大值为;(3)存在某一时刻,使△OMP是等腰三角形.理由如下:①如备用图1,过点P作PG⊥AO于点G,若PO=PM,则OG=GM=CN=x,即3x=4,解得:x=;②如备用图2,过点P作PG⊥AO于点G,若OP=OM,CN=x,则OP= OM= 4﹣x,由勾股定理,得OB===5,∵NP∥OC,∴,即,∴OP=x,即x=4﹣x,解得:x=;③如备用图3,过点P作PQ⊥OA,垂足为Q,若OM=PM时,则PM=OM=4﹣x,OQ=CN=x,则MQ=x-(4-x)=2x﹣4,在Rt△MPQ中,PQ2+QM2=MP2,即(x)2+(2x﹣4)2=(4﹣x)2,解得:x=,综上所述,当x的值为秒或秒或秒时,△OMP是等腰三角形.
科目:初中数学 来源: 题型:
【题目】为了了解某校八年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成如下的两个统计图.
(1)求本次抽测的男生人数,并把条形统计图补充完整;
(2)求这部分男生抽测数据的众数和中位数;
(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地区有38所中学,其中七年级学生共6 858名.为了了解该地区七年级学生每天体育锻炼的时间,请你运用所学的统计知识,将解决上述问题所要经历的几个主要步骤进行排序.①抽样调查;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.其中正确的是( )
A. ①②③④⑤ B. ②①③④⑤ C. ②①④③⑤ D. ②①④⑤③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一名学生统计某一天睡觉、学习、活动、吃饭及其它所用的时间在一天中所占的百分比,选用_____统计图较为合适,气象局统计一昼夜的气温变化情况,选用_____统计图较为合适.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋里装有分别标有汉字“幸”、“福”、“聊”、“城”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,球上的汉字刚好是“福”的概率为多少?
(2)小颖从中任取一球,记下汉字后放回袋中,然后再从中任取一球,求小颖取出的两个球上汉字恰能组成“幸福”或“聊城”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.
(1)求抛物线的解析式;
(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;
(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com