【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,点D是BC边上一动点(不与点B、C重合),过点D作DE⊥BC交AB边于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处,当△AEF为直角三角形时,求BD的长。
【答案】当F点在线段BC上时,BD=1,当F点在线段BC的延长线上时,BD=2.
【解析】试题分析:首先由在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,即可求得AC的长、∠AEF与∠BAC的度数,然后分别从从∠AFE=90°与∠EAF=90°去分析求解,又由折叠的性质与三角函数的知识,即可求得CF的长,继而求得答案.
试题解析:根据题意得:∠EFB=∠B=30°,DF=BD,EF=EB,
∵DE⊥BC,
∴∠FED=90°∠EFD=60°,∠BEF=2∠FED=120°,
∴∠AEF=180°∠BEF=60°,
∵在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,
∴AC=BCtan∠B=3×=,∠BAC=60°,
如图①若∠AFE=90°,
∵在Rt△ABC中,∠ACB=90°,
∴∠EFD+∠AFC=∠FAC+∠AFC=90°,
∴∠FAC=∠EFD=30°,
∴CF=ACtan∠FAC=×=1,
∴BD=DF= =1;
如图②若∠EAF=90°,
则∠FAC=90°∠BAC=30°,
∴CF=ACtan∠FAC=×=1,
∴BD=DF==2,
∴△AEF为直角三角形时,BD的长为:1或2.
科目:初中数学 来源: 题型:
【题目】如图,已知是⊙的直径, 是⊙上一点,∠的平分线交⊙于点,交⊙的切线于点,过点作⊥,交的延长线于点.
(1)求证: 是⊙的切线;
(2)若.求值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BD是△ABC的角平分线,它的垂直平分线分别交AB、BC于点E、F、G,连接ED、DG.
(1)请判断四边形EBGD的形状,并说明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,求GC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(1,0)、B(3,2)、C(0,1)(正方形网格中每个小正方形的边长是一个单位长度).
(1)沿x轴向左平移2个单位,得到△A1B1C1,不画图直接写出发生变化后的点的坐标。点的坐标是 ;
(2)以A点为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,则点的坐标是 ;
(3) △A2B2C2的面积是 平方单位.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0.1<x2<2.下列结论:4a+2b+c<0;2a+b<0;b2+8a>4ac;
a<﹣1;其中结论正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分12分)如图,平行四边形OBCD中,OB=8cm,BC=6cm,∠DOB=45°,点P从O沿OB边向点B移动,点Q从点B沿BC边向点C移动,P,Q同时出发,速度都是1cm/s.
(1)求经过O,B,D三点的抛物线的解析式;
(2)判断P,Q移动几秒时,△PBQ为等腰三角形;
(3)若允许P点越过B点在BC上运动,Q点越过C点在CD上运动,设线PQ与OB,BC,DC围成的图形面积为y(cm2),点P,Q的移动时间为t(s),请写出y与t之间的函数关系式,并写出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3)
①若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标
②若△ABC和△A2B2C2关于原点O成中心对称,写出△A2B2C2的各顶点的坐标;
③将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列计算中①x(2x2-x+1)=2x3-x2+1;②(a + b)2=a2+b2;③(x-4)2=x2-4x+16;
④(5a-1)(-5a-1)=25a2-1;⑤(-a-b)2=a2+2ab+b2,正确的个数有…( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com