杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是
![]()
A. 19.7千克 B. 19.9千克 C. 20.1千克 D. 20.3千克
科目:初中数学 来源:2014年初中毕业升学考试(浙江宁波卷)数学(解析版) 题型:填空题
一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是 (用
,
的代数式表示)
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(浙江宁波卷)数学(解析版) 题型:选择题
已知命题“关于
的一元二次方程
,当
时必有实数解”,能说明这个命题是假命题的一个反例是
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江西南昌卷)数学(解析版) 题型:解答题
如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合).
第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;
第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;
依次操作下去…
(1)图2中的△EFD是经过两次操作后得到的,其形状为 ,求此时线段EF的长;
(2)若经过三次操作可得到四边形EFGH.
①请判断四边形EFGH的形状为 ,此时AE与BF的数量关系是 ;
②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围;
(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江苏镇江卷)数学(解析版) 题型:解答题
我们知道平行四边形有很多性质.
现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.
【发现与证明】
ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D.
结论1:B′D∥AC;
结论2:△AB′C与
ABCD重叠部分的图形是等腰三角形.
……
请利用图1证明结论1或结论2(只需证明一个结论).
【应用与探究】在
ABCD中,已知∠B=30°,将△ABC沿AC翻折至△AB′C,连结B′D.
(1)如图1,若
,则∠ACB= °,BC= ;
(2)如图2,
,BC=1,AB′与边CD相交于点E,求△AEC的面积;
(3)已知
,当BC长为多少时,是△AB′D直角三角形?
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江苏连云港卷)数学(解析版) 题型:填空题
如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF,如图2,展形再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为M,EM交AB于N,则tan∠ANE= .
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com