精英家教网 > 初中数学 > 题目详情
4.如图,在线段AB上取一点C,分别以AC、BC为边长作菱形ACDE和菱形BCFG,使点D在CF上,连接EG,H是EG的中点,EG=4,则CH的长是2.

分析 连接AD,CE,CG,根据菱形的性质可知AD⊥CE,∠CAD=$\frac{1}{2}$∠EAC,∠BCG=$\frac{1}{2}$∠BCF,根据平行线的性质可得出∠EAC=∠BCF,故可得出∠CAD=∠BCG,所以AD∥CG,即CE⊥CG,再由直角三角形的性质即可得出结论.

解答 解:连接AD,CE,CG,
∵四边形ACDE与四边形BCFG均是菱形,
∴AD⊥CE,∠CAD=$\frac{1}{2}$∠EAC,∠BCG=$\frac{1}{2}$∠BCF.
∵AE∥CF,
∴∠EAC=∠BCF,
∴∠CAD=∠BCG,
∴AD∥CG,
∴CE⊥CG.
∵H是EG的中点,EG=4,
∴CH=$\frac{1}{2}$EG=2.
故答案为:2.

点评 本题考查的是菱形的性质,根据题意作出辅助线,构造出直角三角形,利用直角三角形的性质求解是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.矩形ABCD中,AB=3,BC=4,∠BAC的平分线交BC于E,P、Q分别是AE、AB上的动点,则PB+PQ的最小值是(  )
A.5B.$\frac{7}{2}$C.$\frac{5}{2}$D.$\frac{12}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知菱形ABCD中,对角线AC=4cm,BD=xcm,菱形的面积为ycm2
(1)求菱形ABCD的面积与对角线BD之间的函数关系式:
(2)画出函数的图象:
(3)根据图象求出当x=2时y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.阅读理解:对于任意正实数a、b,∵($\sqrt{a}-\sqrt{b}$)2≥0,∴a-2$\sqrt{ab}+b≥0$,∴a+b≥2$\sqrt{ab}$,当且仅当a=b时,等号成立.
结论:在a+b$≥2\sqrt{ab}$(a、b均为正实数)中,若ab为定值P,则a+b$≥2\sqrt{P}$,
当且仅当a=b时,a+b有最小值2$\sqrt{P}$.
根据上述内容,回答下列问题:
(1)若x>0,只有当x=$\frac{3}{2}$时,4x+$\frac{9}{x}$有最小值为12.
(2)探索应用:如图,已知A(-2,0),B(0,-3),点P为双曲线y=$\frac{6}{x}$(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D,求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.
(3)已知x>0,则自变量x为何值时,函数y=$\frac{x}{{x}^{2}-4x+16}$取到最大值,最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.使不等式x-4>4x-1成立的值中最大的整数是(  )
A.0B.-2C.-1D.2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,$\sqrt{3}$),动点P从点A出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2017秒时,点P的坐标为($\frac{3}{4}$,$\frac{\sqrt{3}}{4}$).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数$y=\frac{k+1}{x}$的图象上.若点A的坐标为(-2,-2),则k的值为3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.
(1)求证:四边形ABEF为菱形;
(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知a2-4a+9b2+6b+5=0,求a+b的值.

查看答案和解析>>

同步练习册答案