6£®Îª·á¸»Ñ§ÉúµÄУ԰Éú»î£¬Ä³Ð£¾ÙÐС°Ó밮ͬÐС±ÀÊËбÈÈü£¬ÈüºóÕûÀí²ÎÈüͬѧµÄ³É¼¨£¬»æÖƳÉÈçϲ»ÍêÕûµÄͳ¼Æͼ±í£¬Çë¸ù¾Ýͼ±íÖеÄÐÅÏ¢½â´ðÏÂÁÐÎÊÌ⣮
×é±ð³É¼¨x£¨·Ö£©ÆµÊý£¨ÈËÊý£©
A8.0¡Üx£¼8.5a
B8.5¡Üx£¼9.08
C9.0¡Üx£¼9.515
D9.5¡Üx£¼103
£¨1£©Í¼ÖÐa=4£¬Õâ´Î±ÈÈü³É¼¨µÄÖÚÊýÂäÔÚC×飻
£¨2£©Ç벹ȫƵÊý·Ö²¼Ö±·½Í¼£»
£¨3£©Ñ§Ð£¾ö¶¨Ñ¡Åɱ¾´Î±ÈÈü³É¼¨×îºÃµÄ3È˲μÓÈ«ÊÐÖÐѧÉúÀÊËбÈÈü£¬²¢Îª²ÎÈüÑ¡ÊÖ×¼±¸ÁË2¼þ°×É«¡¢1¼þÀ¶É«ÉÏÒºͺÚÉ«¡¢À¶É«¡¢°×É«µÄ¿ã×Ó¸÷1Ìõ£¬Ð¡¾üÏÈÑ¡£¬Ëû´ÓÖÐËæ»úÑ¡È¡Ò»¼þÉÏÒºÍÒ»Ìõ¿ã×Ó´îÅä³ÉÒ»Ì×Ò·þ£¬ÇëÓû­Ê÷״ͼ·¨»òÁÐ±í·¨Çó³öÉÏÒºͿã×Ó´îÅä³É²»Í¬ÑÕÉ«µÄ¸ÅÂÊ£®

·ÖÎö £¨1£©ÓÉÌõÐÎͼ¿ÉµÃaµÄÖµ£¬¸ù¾ÝÖÚÊýµÄ¶¨Ò弰ƵÊý·Ö²¼±í¿ÉµÃ´ð°¸£»
£¨2£©¸ù¾ÝƵÊý·Ö²¼±íµÃ³öB×éµÄƵÊý¼´¿É²¹È«ÌõÐÎͼ£»
£¨3£©ÁÐ±í·¨µÃ³öËùÓеȿÉÄܽá¹û£¬ÔÙ¸ù¾Ý¸ÅÂʹ«Ê½¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©ÓÉÌõÐÎͳ¼Æͼ¿ÉÖª£¬a=4£¬ÓÉƵÊý·Ö²¼Ö±·½Í¼¿ÉÖªÕâ´Î±ÈÈü³É¼¨µÄÖÚÊýÂäÔÚC×飬
¹Ê´ð°¸Îª£º4£¬C£»

£¨2£©²¹È«ÆµÊý·Ö²¼Ö±·½Í¼ÈçÏ£º


£¨3£©ÉèÁ½Ìõ°×É«ÉÏÒ·ֱð¼ÇΪ°×1¡¢°×2£¬»­³öÊ÷״ͼ£¨»òÁÐ±í£© µÃ£º

°×1°×2À¶
ºÚ£¨°×1£¬ºÚ£©£¨°×2£¬ºÚ£©£¨À¶£¬ºÚ£©
À¶£¨°×1£¬À¶£©£¨°×2£¬À¶£©£¨À¶£¬À¶£©
°×£¨°×1£¬°×£©£¨°×2£¬°×£©£¨À¶£¬°×£©
ÓÉÊ÷״ͼ£¨»ò±í¸ñ£©¿ÉÒÔ¿´³ö£¬ËùÓпÉÄܳöÏֵĽá¹û¹²ÓÐ9ÖÖ£¬ÕâЩ½á¹û³öÏֵĿÉÄÜÐÔÏàµÈ£®ÆäÖÐÉÏÒºͿã×Ó´îÅä³É²»Í¬ÑÕÉ«µÄ½á¹ûÓÐ6ÖÖ£®
¡àP£¨ÉÏÒºͿã×Ó´îÅä³É²»Í¬ÑÕÉ«£©=$\frac{6}{9}$=$\frac{2}{3}$£®

µãÆÀ ±¾Ì⿼²éÁËƵÊý·Ö²¼±íºÍÌõÐÎͳ¼Æͼ£ºÌõÐÎͳ¼ÆͼÊÇÓÃÏ߶γ¤¶È±íʾÊý¾Ý£¬¸ù¾ÝÊýÁ¿µÄ¶àÉÙ»­³É³¤¶Ì²»Í¬µÄ¾ØÐÎÖ±Ìõ£¬È»ºó°´Ë³Ðò°ÑÕâЩֱÌõÅÅÁÐÆðÀ´£»´ÓÌõÐÎͼ¿ÉÒÔºÜÈÝÒ׿´³öÊý¾ÝµÄ´óС£¬±ãÓڱȽϣ®Ò²¿¼²éÁËÉÈÐÎͳ¼ÆͼÁÐ±í·¨ÓëÊ÷״ͼ·¨£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬PΪÕý·½ÐÎABCDÄÚÒ»µã£¬PB=1£¬PC=2£¬¡ÏBPC=135¡ã£¬ÇóPDµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÅ×ÎïÏßy=ax2+bx+cµÄ¶¥µãΪA£¬¾­¹ýµãB£¨0£¬3£©ºÍµã£¨2£¬3£©£¬ÓëxÖá½»ÓÚC£¬DÁ½µã£¬£¨µãCÔÚµãDµÄ×ó²à£©£¬ÇÒOD=OB£®
£¨1£©ÇóÕâÌõÅ×ÎïÏߵıí´ïʽ£»
£¨2£©Á¬½ÓAB£¬BD£¬DA£¬ÊÔÅжϡ÷ABDµÄÐÎ×´£»
£¨3£©µãPÊÇBDÉÏ·½Å×ÎïÏßÉϵĶ¯µã£¬µ±PÔ˶¯µ½Ê²Ã´Î»ÖÃʱ£¬¡÷BPDµÄÃæ»ý×î´ó£¿Çó³ö´ËʱµãPµÄ×ø±ê¼°¡÷BPDµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º$\frac{a^2}{{{a^2}+2a}}$-$\frac{{{a^2}-2a+1}}{a+2}$¡Â$\frac{{{a^2}-1}}{a+1}$£¬ÆäÖÐa=cos30¡ã-2tan45¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®²»µÈʽ3x-2£¾4µÄ½â¼¯ÔÚÊýÖáÉϱíʾÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÉÌÆ·µÄÔ­ÊÛ¼ÛΪmÔª£¬Èô°´¸Ã¼ÛµÄ8ÕÛ³öÊÛ£¬ÈÔ»ñÀûn%£¬Ôò¸ÃÉÌÆ·µÄ½ø¼ÛΪ$\frac{0.8m}{1+n%}$Ôª£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÔÚµÈÑüÖ±½Ç¡÷ABCÖУ¬¡ÏACB=90¡ã£¬µãDΪÈý½ÇÐÎÄÚÒ»µã£¬ÇÒ¡ÏACD=¡ÏDAB=¡ÏDBC£®
£¨1£©Çó¡ÏCDBµÄ¶ÈÊý£»
£¨2£©ÇóÖ¤£º¡÷DCA¡×¡÷DAB£»
£¨3£©ÈôCDµÄ³¤Îª1£¬ÇóABµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2-3x+m-3=0£¬Èô´Ë·½³ÌµÄÁ½¸ùµÄµ¹ÊýºÍΪ1£¬ÇómµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®£¨1£©¼ÆË㣺|-$\sqrt{3}$|-$\sqrt{12}$+2sin60¡ã+£¨$\frac{1}{3}$£©-1+£¨2-$\sqrt{3}$£©0
£¨2£©ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º$\frac{{x}^{2}-2x}{1-x}$-$\frac{1}{x-1}$£¬ÆäÖÐx=2017£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸