分析 将△PBC沿C点顺时针旋转90°,此时B与D点重合,P点旋转到P'点,连接PP',易证△PCP'是等腰直角三角形,所以利用勾股定理可求出P'P的长,在证明△PP'D是直角三角形.利用勾股定理求出PD的长即可.
解答 解:
将△PBC沿C点顺时针旋转90°,此时B与D点重合,P点旋转到P'点,连接PP'
∴PC=P'C=2,BP=DP′=1,
∴△PCP'是等腰直角三角形,
∴∠PP'C=45°,
∴PP'=$\sqrt{2}$PC=2$\sqrt{2}$,
又∵∠DP'C=∠BPC=135°,
∴∠PP'D=135°-45°=90°,
∴在直角△PP'D中,PD=$\sqrt{DP{′}^{2}+PP{′}^{2}}$=3.
点评 本题考查了正方形的性质、旋转的性质、等腰直角三角形的判断和性质以及勾股定理的运用,解答此题的关键是利用旋转构建直角三角形,由勾股定理求解.
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{2}{3}$ | B. | $\frac{3}{2}$ | C. | $\frac{3}{13}\sqrt{13}$ | D. | $\frac{2}{13}\sqrt{13}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
组别 | 成绩x(分) | 频数(人数) |
A | 8.0≤x<8.5 | a |
B | 8.5≤x<9.0 | 8 |
C | 9.0≤x<9.5 | 15 |
D | 9.5≤x<10 | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com