【题目】△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.
(1)当(0≤t≤1)时,PM=____________ ,QN=___________(用t的代数式表示);
(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;
(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?
【答案】(1)PM=t ,QN= (3-t);(2)t= s;(3)s或s
【解析】
(1)在△ABC中,∠C=90°,∠A=60°,AC=2cm,得AB=4cm,在Rt△APM中和Rt△BNQ中利用正切即可求得PM和QN的值;
(2)当PM=QN时,四边形MNQP为矩形,建立含t的方程,求得t的值;
(3)以C,P,Q为顶点的三角形与△ABC相似有两种情况,△PQC∽△ABC时和△QPC∽△ABC,分别相似三角形的判定和性质,求得相对应的t的值.
(1)△ABC中,∠C=90°,∠A=60°,AC=2cm,
∴AB=4cm,
经过t秒,AM=t,
在Rt△APM中,∠A=60°,
∴PM=AMtan60°=t,
BN=AB-AM-MN=4-t-1=3-t,
∴QN= BNtan30°=(3-t),
故答案为:t;(3-t),
(2)∵AC=2,
∴AB=4,
∴BN=AB﹣AM﹣MN=4﹣t﹣1=3﹣t,
∴QN=BNtan30°=(3﹣t),
由条件知,若四边形MNQP为矩形,需PM=QN,即t=(3﹣t),
∴t=,
∴当t=s时,四边形MNQP为矩形;
(3)由(2)知,当t= s时,四边形MNQP为矩形,此时PQ∥AB,
∴△PQC∽△ABC,
除此之外,当∠CPQ=∠B=30°时,△QPC∽△ABC,此时 =tan30°=,
∵=cos60°=,
∴AP=2AM=2t,
∴CP=2﹣2t,
∵=cos30°=,
∴BQ= (3﹣t),
又∵BC=2,
∴CQ=2,
∴
,
∴当s或s时,以C,P,Q为顶点的三角形与△ABC相似.
科目:初中数学 来源: 题型:
【题目】如图,晚上,小亮在广场上乘凉.图中线段AB表示站在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.
(1)请你在图中画出小亮在照明灯(P)照射下的影子;
(2)如果灯杆高PO=12m,小亮的身高AB=1.6m,小亮与灯杆的距离BO=13m,请求出小亮影子的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt中,∠A=90°,AC=4,,将沿着斜边BC翻折,点A落在点处,点D、E分别为边AC、BC的中点,联结DE并延长交所在直线于点F,联结,如果为直角三角形时,那么____________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,AB=AC=4,BC=6点D在底边BC上,且∠DAC=∠ACD,将△ACD沿着AD所在直线翻折,使得点C落到点E处,联结BE,那么BE的长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分 | 频数 | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
请根据所给信息,解答下列问题:
(1)m= ,n= ;
(2)请补全频数分布直方图;
(3)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D.设P点运动时间为t,△PCQ的面积为S.
(1)求出S关于t的函数关系式;
(2)当点P运动几秒时,S△PCQ=S△ABC?
(3)作PE⊥AC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过点C作CE⊥BD,交BD的延长线于点E,如图①.
(1)求证:ADCD=BDDE;
(2)若BD是边AC的中线,如图②,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE. 将△EDC绕点C按顺时针方向旋转,记旋转角为α.
(1)问题发现
① 当时,;② 当时,
(2)拓展探究
试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.
(3)问题解决
当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y=﹣x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.
(1)求此抛物线的解析式.
(2)求点N的坐标.
(3)过点A的直线与抛物线交于点F,当tan∠FAC=时,求点F的坐标.
(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t≤),请直接写出S与t的函数关系式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com