【题目】在Rt中,∠A=90°,AC=4,,将沿着斜边BC翻折,点A落在点处,点D、E分别为边AC、BC的中点,联结DE并延长交所在直线于点F,联结,如果为直角三角形时,那么____________
【答案】4或
【解析】
当△A1EF为直角三角形时,存在两种情况:
①当∠A1EF=90°时,如图1,根据对称的性质和平行线可得:A1C= A1E=4,根据直角三角形斜边中线的性质得:BC=2 A1E=8,最后利用勾股定理可得AB的长;
②当∠A1FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.
解:当△A1EF为直角三角形时,存在两种情况:
①当∠A1EF=90°时,如图1,
∵△A1BC与△ABC关于BC所在直线对称,
∴A1C=AC=4,∠ACB=∠A1CB,
∵点D,E分别为AC,BC的中点,
∴D、E是△ABC的中位线,
∴DE∥AB,
∴∠CDE=∠MAN=90°,
∴∠CDE=∠A1EF,
∴AC∥A1E,
∴∠ACB=∠A1EC,
∴∠A1CB=∠A1EC,
∴A1C= A1E=4,
Rt△A1CB中,∵E是斜边BC的中点,
∴BC=2 A1E=8,
由勾股定理得:AB2=BC2-AC2,
∴AB=
②当∠A1FE=90°时,如图2,
∵∠ADF=∠A=∠DFB=90°,
∴∠ABF=90°,
∵△A1BC与△ABC关于BC所在直线对称,
∴∠ABC=∠CB A1=45°,
∴△ABC是等腰直角三角形,
∴AB=AC=4;
综上所述,AB的长为4或4;
故答案为:4或4.
科目:初中数学 来源: 题型:
【题目】为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:
(1)请将条形统计图补充完整;
(2)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;
(3)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表法或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=-1,点B的坐标为(1,0),则下列结论:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正确的结论有( )个.
A. 3B. 4C. 2D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,以AB为直径画弧分别交BC于点F,交对角线AC于点E,若AB=4,F为BC的中点,则图中阴影部分的面积为 ________;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点0 为Rt△ABC斜边AB上的一点,以OA 为半径的☉O与BC切于点D,与AC 交于点E,连接AD.
(1) 求证: AD平分∠BAC;
(2)若∠BAC= 60°,OA=4,求阴影部分的面积(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线:与直线l:交于x轴上的一点A,和另一点
求抛物线的解析式;
点P是抛物线上的一个动点点P在A,B两点之间,但不包括A,B两点于点M,轴交AB于点N,求MN的最大值;
如图2,将抛物线绕顶点旋转后,再作适当平移得到抛物线,已知抛物线的顶点E在第一象限的抛物线上,且抛持线与抛物线交于点D,过点D作轴交抛物线于点F,过点E作轴交抛物线于点G,是否存在这样的抛物线,使得四边形DFEG为菱形?若存在,请求E点的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.
(1)当(0≤t≤1)时,PM=____________ ,QN=___________(用t的代数式表示);
(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;
(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l:y=﹣x+4分别与x轴、y轴交于点A,B,双曲线(k>0,x>0)与直线l不相交,E为双曲线上一动点,过点E作EG⊥x轴于点G,EF⊥y轴于点F,分别与直线l交于点C,D,且∠COD=45°,则k=_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com