精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).

(1)求抛物线的函数表达式;
(2)若点P在抛物线上,且SAOP=4SBOC , 求点P的坐标;
(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.

【答案】
(1)解:把A(﹣3,0),C(0,3)代入y=﹣x2+bx+c,得

解得

故该抛物线的解析式为:y=﹣x2﹣2x+3.


(2)解:由(1)知,该抛物线的解析式为y=﹣x2﹣2x+3,则易得B(1,0).

∵SAOP=4SBOC

×3×|﹣x2﹣2x+3|=4× ×1×3.

整理,得(x+1)2=0或x2+2x﹣7=0,

解得x=﹣1或x=﹣1±2

则符合条件的点P的坐标为:(﹣1,4)或(﹣1+2 ,﹣4)或(﹣1﹣2 ,﹣4)


(3)解:设直线AC的解析式为y=kx+t,将A(﹣3,0),C(0,3)代入,

解得

即直线AC的解析式为y=x+3.

设Q点坐标为(x,x+3),(﹣3≤x≤0),则D点坐标为(x,﹣x2﹣2x+3),

QD=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+ 2+

∴当x=﹣ 时,QD有最大值


【解析】(1)利用待定系数法,把点A、C的坐标分别代入函数解析式,列出方程组,求解即可求出抛物线的解析式。
(2)设P点坐标为(x,-x2-2x+3),根据S△AOP=4S△BOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标;
(3)先运用待定系数法求出直线AC的解析式,再设Q点坐标为(x,x+3),则D点坐标为(x,x2+2x-3),然后求出QD与x的函数解析式,求出其顶点坐标,即可求出线段QD长度的最大值。

【考点精析】通过灵活运用公式法和确定一次函数的表达式,掌握要用公式解方程,首先化成一般式.调整系数随其后,使其成为最简比.确定参数abc,计算方程判别式.判别式值与零比,有无实根便得知.有实根可套公式,没有实根要告之;确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC在直角坐标系中。

(1)请写出ABC各点的坐标;

(2)求出ABC的面积SABC

(3)若把ABC向上平移2个单位,再向右平移2个单位得A1B1C1,在图中画出A1B1C1,并写出A1B1C1的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在平面直角坐标系中,Aa0)、B0b),ab满足 +|a3 |=0CAB的中点,P是线段AB上一动点,Dx轴正半轴上一点,且PO=PDDEABE

1)求OAB的度数;

2)设AB=6,当点P运动时,PE的值是否变化?若变化,说明理由;若不变,请求PE的值;

(3)设AB=6,若OPD=45°,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义符号min{abc}表示abc三个数中的最小值,如min{1,﹣23}=﹣2min{055}0

1)根据题意填空:min   

2)试求函数ymin{2x+1,﹣3x+11}的解析式;

3)关于x的方程﹣x+mmin{2x+1,﹣3x+11}有解,试求常数m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点AB的坐标分别为(20)(60),现同时将点AB分别向上平移4个单位,再向右平移2个单位,分别得到点AB的对应点CD,连接ACBD

(1)求点CD的坐标及四边形ABDC的面积S四边形ABDC

(2)y轴上是否存在一点P,连接PAPB,使SPAB=S四边形ABDC,若存在这样一点,求出点P的坐标,若不存在,试说明理由.

(3)P是线段BD上的一个动点,连接PCPO,当点PBD上移动时(不与BD重合)给出下列结论:①的值不变;的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,射线分别和直线交于点,射线分别和直线交于点,点在射线上运动(点与三点不重合),设,,

(1)如果点两点之间运动时,之间有何数量关系?请说明理由;

(2)如果点两点之外运动时,之间有何数量关系?(只需写出结论,不必说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC的两条高ADBE交于点F,∠ABC45°,∠BAC60°

1)求证:DFDC

2)连接CF,求证:ABAC+CF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,已知AD∥BC,AB⊥BC,点E,F在边AB上,且∠AED=45°,∠BFC=60°,AE=2,EF=2﹣ ,FC=2

(1)BC=
(2)求点D到BC的距离;
(3)求DC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=5,AB=3.

(1)利用尺规在AC上找到一点D,使得DA=DC(保留作图痕迹,不写作法).
(2)连接DB,若DA=DC=DB,试判断△ABC的形状,说明理由,并求出△ABC的面积.

查看答案和解析>>

同步练习册答案