【题目】某水果店出售某种水果,已知该水果的进价为6元/千克,若以9元/千克的价格销售,则每天可售出200千克;若以11元/千克的价格销售,则每天可售出120千克.通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.
(1)求y(千克)与x(元)(x>0)的函数关系式;
(2)当销售单价为何值时,该水果店销售这种水果每天获取的利润达到280元?
(3)水果店在进货成本不超过720元时,销售单价定为多少元可获得最大利润?最大利润是多少?
【答案】(1)y=-40x+560;(2)13元或7元;(3)11,600
【解析】试题分析:(1)以9元/千克的价格销售,那么每天可售出200千克;以11元/千克的价格销售,那么每天可售出120千克,就相当于直线过点(9,200),(11,120),然后列方程组解答即可;
(2)根据利润=销售量×(销售单价﹣进价)写出方程求出即可;
(3)根据利润=销售量×(销售单价﹣进价)写出解析式,然后利用配方法求最大值,再结合二次函数性质得出答案.
试题解析:解:(1)设y(千克)与x(元)(x>0)的函数关系式为:y=kx+b,根据题意可得: ,解得: .
故y(千克)与x(元)(x>0)的函数关系式为:y=﹣40x+560;
(2)∵W=280元,∴280=(﹣40x+560)×(x﹣6)
解得:x1=7,x2=13.
答:当销售单价为7元或13元时,每天可获得的利润达到W=280元;
(3)∵利润=销售量×(销售单价﹣进价)
∴W=(﹣40x+560)(x﹣6)
=﹣40x2+800x﹣3360
=﹣40(x﹣10)2+640
当售价为10元,则y=560﹣400=160,160×6=960(元)>720元,则当(﹣40x+560)×6=720,解得:x=11.
即当销售单价为11元时,每天可获得的利润最大,最大利润是600元.
科目:初中数学 来源: 题型:
【题目】正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:
(1)画出△ABC关于点O成中心对称的图形△A1B1C1;
(2) 将△A1B1C1沿y轴正方向平移5个单位得到△A2B2C2 ,画出△A2B2C2;
(3)若△ABC与△A2B2C2 绕点P旋转重合,则点P的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,⊙O与AC相交于点D,∠BAC=45°,AB=BC.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为2cm,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,已知点A(0,a),B(0,b)在y轴上,点 C(m,b)是第四象限内一点,且满足,△ABC的面积是56;AC交x轴于点D,E是y轴负半轴上的一个动点.
(1)求C点坐标;
(2)如图2,连接DE,若DEAC于D点,EF为∠AED的平分线,交x轴于H点,且∠DFE=90°,求证:FD平分∠ADO;
(3)如图3,E在y轴负半轴上运动时,连EC,点P为AC延长线上一点,EM平分 ∠AEC,且PM⊥EM于M点,PN⊥x轴于N点,PQ平分∠APN,交x轴于Q点,则E在运动过程中,的大小是否发生变化,若不变,求出其值;若变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍,求降价后每枝玫瑰的售价是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,直线y=x+b与x轴交于点A(2,0),P为y轴上B点下方一点,以AP为腰作等腰直角三角形APM,点M落在第四象限,若PB=m(m>0),用含m的代数式表示点M的坐标是( )
A.(m-2,m+4)B.(m+2,m+4)C.(m+2,-m-4)D.(m-2,-m-4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元.
(1)该商家购进的第一批衬衫是多少件?
(2)若两批衬衫都按每件150元的价格销售,则两批衬衫全部售完后的利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,顶点为P(4,-4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M、N关于点P对称,连接AN、ON.
(1)求该二次函数的关系式;
(2)若点A的坐标是(6,-3),求△ANO的面积;
(3)当点A在对称轴l右侧的二次函数图象上运动时,请解答下面问题:
①证明:∠ANM=∠ONM;
②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标;如果不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com