精英家教网 > 初中数学 > 题目详情

【题目】如图所示,已知

1)求证:

2)若绕点B旋转到外部,其他条件不变,则(1)中结论是否仍成立?请证明.

【答案】(1)详见解析;(2)成立,证明详见解析

【解析】

1)根据等式的性质,可得∠ABD与∠CBE的关系,根据全等三角形的判定与性质,可得ADCE的关系,根据余角的性质,可得∠CGF与∠BCE的关系,根据直角三角形的判定,可得答案;
2)根据等式的性质,可得∠ABD与∠CBE的关系,根据全等三角形的判定与性质,可得ADCE的关系,根据余角的性质,可得∠DGF与∠FDG的关系,根据直角三角形的判定,可得答案.

(1)∵

中,

.即

2)结论仍然成立.如图所示.

∴∠

中,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某中学数学活动小组在学习了利用三角函数测高后,选定测量小河对岸一幢建筑物BC的高度,他们先在斜坡上的D处,测得建筑物顶端B的仰角为30°.且D离地面的高度DE=5m.坡底EA=30m,然后在A处测得建筑物顶端B的仰角是60°,点E,A,C在同一水平线上,求建筑物BC的高.(结果用含有根号的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了你对哪类在线学习方式最感兴趣的调查,并根据调查结果绘制成如下两幅不完整的统计图.

1)求本次调查的学生总人数,并补全条形统计图;

2)求扇形统计图中在线讨论对应的扇形圆心角的度数;

3)该校共有学生3000人,请你估计该校对在线阅读最感兴趣的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(初步探究)

1)如图1,在四边形ABCD中,∠B=∠C90°,点E是边BC上一点,ABECBECD,连接AEDE.判断△AED的形状,并说明理由.

(解决问题)

2)如图2,在长方形ABCD中,点P是边CD上一点,在边BCAD上分别作出点EF,使得点FEP是一个等腰直角三角形的三个顶点,且PEPF,∠FPE90°.要求:仅用圆规作图,保留作图痕迹,不写作法.

(拓展应用)

3)如图3,在平面直角坐标系xOy中,已知点A20),点B41),点C在第一象限内,若△ABC是等腰直角三角形,则点C的坐标是   

4)如图4,在平面直角坐标系xOy中,已知点A10),点Cy轴上的动点,线段CA绕着点C按逆时针方向旋转90°至线段CBCACB,连接BOBA,则BO+BA的最小值是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题:①全等三角形的对应边上的中线,高线,对应角的平分线对应相等;②两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;③两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;④两边和其中一边上的高线(或第三边上的高线)对应相等的两个三角形全等.其中正确命题有________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一张长方形纸片分別沿着EPFP对折,使点B落在点B,点C落在点C.若点PBC不在一条直线上,且两条折痕的夹角∠EPF85°,则∠BPC_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若抛物线L1:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线L2都经过y轴上的一点P,且抛物线L1与顶点Q在直线L2上,则称此直线L2与该抛物线L1具有“一带一路”关系,此时,直线L2叫做抛物线L1的“带线”,抛物线L1叫做直L2的“路线”.

(1) 若直线y=mx+1与抛物线y=x2-2x+n具有“一带一路”关系,则m+n=_______.

(2) 若某“路线”L1的顶点在反比例函数的图像上,它的“带线” L2的解析式为y=2x-4,则此“路线”L的解析式为:_____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据材料,解答问题

如图,数轴上有点,对应的数分别是6-44-1,则两点间的距离为两点间的距离为两点间的距离为;由此,若数轴上任意两点分别表示的数是,则两点间的距离可表示为反之,表示有理数在数轴上的对应点之间的距离,称之为绝对值的几何意义

问题应用1

1)如果表示-1的点和表示的点之间的距离是2,则点对应的的值为___________

2)方程的解____________

3)方程的解______________

问题应用2

如图,若数轴上表示的点为.

4的几何意义是数轴上_____________,当__________的值最小是____________

5的几何意义是数轴上_______的最小值是__________,此时点在数轴上应位于__________上;

6)根据以上推理方法可求的最小值是___________,此时__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某月的月历,图中带阴影的方框恰好盖住四个数,不改变带阴影的方框的形状大小,移动方框的位置.

(1)若带阴影的方框盖住的4个数中,A表示的数是x,求这4个数的和(用含x的代数式表示)

(2)若带阴影的方框盖住的4个数之和为82,求出A表示的数;

(3)4个数之和可能为38112吗?如果可能,请求出这4个数,如果不可能,请说明理由.

查看答案和解析>>

同步练习册答案