精英家教网 > 初中数学 > 题目详情

【题目】宜宾是国家级历史文化名城,大观楼是标志性建筑之一(如图①).喜爱数学实践活动的小伟查资料得知:大观楼始建于明代(一说是唐代韦皋所建),后毁于兵火,乾隆乙酉年(1765年)重建,它是我国目前现存最高大、最古老的楼阁之一.小伟决定用自己所学习的知识测量大观楼的高度.如图②,他利用测角仪站在B处测得大观楼最高点P的仰角为45°,又前进了12米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算大观楼的高度.(测角仪高度忽略不计, ≈1.7,结果保留整数).

【答案】解:设大观楼的高OP=x,
在Rt△POB中,∠OBP=45°,
则OB=OP=x,
在Rt△POA中,∠OAP=60°,
则OA= = x,
由题意得,AB=OB﹣OA=12m,即x﹣ x=12,
解得:x=18+6
故大观楼的高度OP=18+6 ≈28(米).
答:大观楼的高度约为28米
【解析】设大观楼的高OP=x,在Rt△POB中表示出OB,在Rt△POA中表示出OA,再由AB=12米,可得出方程,解出即可得出答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠B65°,∠BAD40°,∠AED100°,∠CDE45°,求∠CAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知射线 DM与直线AB交于点A,线段EC与直线AB交于点CABDE.

(1)当MAC=100°,BCE=120°时,把EC绕点E旋转多大角度(所求角度小于180°)时,可判定MDEC?请你设计出两种方案,并画出草图;

(2)若将EC绕点E逆时针旋转60°时,点C与点A恰好重合,请画出草图,并在图中找出同位角、内错角各两对(先用数字标出角,再回答).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图1,在△ABC和△ADE中,AB=AC=AD=AE,当∠BAC+∠DAE=180° 时,我们称△ABC与△DAE互为“顶补等腰三角形”,△ABC的边BC上的高线AM叫做△ADE的“顶心距”,点A叫做“旋补中心”.

(1)特例感知:在图2,图3中,△ABC与△DAE互为“顶补等腰三角形”,AM是“顶心距”

①如图2,当∠BAC=90°时,AM与DE之间的数量关系为AM=   DE;

②如图3,当∠BAC=120°,ED=6时,AM的长为   

(2)猜想论证:

在图1中,当∠BAC为任意角时,猜想AM与DE之间的数量关系,并给予证明

(3)拓展应用

如图4,在四边形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,CA=,在四边ABCD的内部找到点P,使得△PAD与△PBC互为“顶补等腰三角形”并回答下列问题

①请在图中标出点P的位置,并描述出该点的位置为

②直接写出△PBC的“顶心距”的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2013年4月20日,我省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将从1开始的连续自然数按图规律排列:规定位于第3行,第2列的自然数10记为(32),自然数15记为(42)…….

按此规律,回答下列问题:

1)记为(63)表示的自然数是___________

2)自然数2018记为 __________

3)用一个正方形方框在第3列和第4列中任意框四个数,这四个数的和能为2018吗?如果能,求出框出的四个数中最小的数;如果不能,请写出理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式.例如,由图①,可得等式:(a2b)(ab)a23ab2b2.

(1)由图②,写出所得的等式;

(2)利用(1)中所得到的结论,解决下面的问题: 已知abc11abbcac38,求a2b2c2的值;

(3)如图③,琪琪用2 A型纸片,3 B型纸片,5 C型纸片拼出一个长方形,那么该长方形较长的一条边长为多少.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆汽车从A地驶往B地,前三分之一路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h.汽车从A地到B地共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个问题:   ,并列出方程,求出解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图①,BP、CP分别平分△ABC的外角∠CBD、∠BCE,BQ、CQ分别平分∠PBC、∠PCB,BM、CN分别是∠PBD、∠PCE的角平分线.

(1)∠BAC=40°时,∠BPC=   ,∠BQC=   

(2)BM∥CN时,求∠BAC的度数;

(3)如图,当∠BAC=120°时,BM、CN所在直线交于点O,直接写出∠BOC的度数.

查看答案和解析>>

同步练习册答案