【题目】如图,AD是ΔABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,BC恰好平分∠ABF,下列结论错误的是( )
A.DE=DFB.AC=3DFC.BD=DCD.AD⊥BC
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为坐标原点,四边形OABC为长方形,A(10,0),C(0,4),D是OA的中点,点P在线段BC上运动.
(1)B的坐标为_________;
(2)当∠POD=30°时,求CP的长;
(3)当△DPO是腰长为5的等腰三角形时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在两个全等的等腰直角三角形ABC和EDC中,∠ACB=∠ECD=90°,点A与点E重合,点D与点B重合.现△ABC不动,把△EDC绕点C按顺时针方向旋转,旋转角为α(0°<α<90°).
(1)如图②,AB与CE交于点F,ED与AB,BC分别交于点M,H.求证:CF=CH;
(2)如图③,当α=45°时,试判断四边形ACDM的形状,并说明理由;
(3)如图②,在△EDC绕点C旋转的过程中,连结BD,当旋转角α的度数为多少时,△BDH是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(初步探索)
截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.
(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系;
(灵活运用)
(2)如图2,△ABC为等边三角形,直线a∥AB,D为BC边上一点,∠ADE交直线a于点E,且∠ADE=60°.求证:CD+CE=CA;
(延伸拓展)
(3)如图3,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD.若点E在CB的延长线上,点F在CD的延长线上,满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ACB中,AC=BC=8,O为AB的中点,以O为直角顶点作等腰直角三角形OEF,与边AC,BC相交于点M,N.有下列结论:①AM=CN;②CM+CN=8;③;④当M是AC的中点时,OM=ON.其中正确结论的序号是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC≌△A′B′C,∠ACB=90°,∠B=50°,点B′在线段AB上,AC,A′B′交于点O,则∠COA′的度数是( )
A.50°B.60°
C.45°D.80°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)课本习题回放:如图①,∠ACB=90°,AC=BC, AD⊥CE,BE⊥CE,垂足分别为D,E,AD=2.5cm,DE=1.7cm..求BE的长.
(2)探索证明:如图②,点B、C在∠MAN的边AM、AN上,点E, F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有( )
A. 2对 B. 3对 C. 4对 D. 5对
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com