【题目】如图,点P在直线y=x-1上,设过点P的直线交抛物线y=x2于A(a,a2),B(b,b2)两点,当满足PA=PB时,称点P为“优点”.
(1)当a+b=0时,求“优点”P的横坐标;
(2)若“优点”P的横坐标为3,求式子18a-9b的值;
(3)小安演算发现:直线y=x-1上的所有点都是“优点”,请判断小安发现是否正确?如果正确,说明理由;如果不正确,举出反例.
【答案】(1)点横坐标为;(2)27;(3)正确,理由见解析.
【解析】
(1)先判断点A与点B关于y轴对称得到PA∥x轴,所以P点的纵坐标为a2,P点的横坐标为a2+1,则利用PA=AB得到a2+1-a=a-(-a),然后求出a得到优点”P的横坐标;
(2)由于A点为PB的中点,根据线段的中点坐标公式得到a=,即2a-b=3,然后利用整体代入的方法计算代数式的值;
(3)设P(x,x-1),利用A点为PB的中点得到a=,a2=,消去a得到方程x2+2(b-1)x+1-b2=0,然后通过证明此方程一定有解判断直线y=x-1上的所有点都是“优点”.
(1)∵,
∴点、关于对称,
∴轴,
∵,
∴点的横坐标为,
∴点的坐标为,点的坐标为,
∵轴,
∴,解得,
∴点横坐标为;
(2)∵点在直线上,
∴点坐标为,
∵,
∴,
∴,
∴;
(3)设点坐标为,结合点的坐标,
当时,分析出点的坐标为,
把点坐标代入抛物线解析式中,
,
整理,得,
∵,
∴对于任意,总有x使得PA=AB,
∴直线上的点均为优点.
科目:初中数学 来源: 题型:
【题目】农场有100棵果树,每一棵树平均结600个果子.现准备多种一些果树以提高产量,根据经验估计,每多种一棵果树,平均每棵树就会少结5个果子.假设果园增种x棵果树,果子总产量为y个.
(1)增种多少棵果树,可以使果园的总产量最多?最多为多少?
(2)增种多少棵果树,可以使果子的总产量在60400个以上?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商品的进价为每件30元,售价为每件40元,每周可卖出180件;如果每件商品的售价每上涨1元,则每周就会少卖出5件,但每件售价不能高于50元,设每件商品的售价上涨x元(x为整数),每周的销售利润为y元.
(1)求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)每件商品的售价为多少元时,每周可获得最大利润?最大利润是多少?
(3)每件商品的售价定为多少元时,每周的利润恰好是2145元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某汽车在路面上朝正东方向匀速行驶,在A处观测到楼H在北偏东60°方向上,行驶1小时后到达B处,此时观测到楼H在北偏东30°北方向上,那么汽车由B处到达离楼H距离最近的位置C时,需要继续行驶的时间为( )
A. 60分钟B. 30分钟C. 15分钟D. 45分钟
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数的图象经过点A(2,6).
(1)求这个反比例函数的解析式;
(2)这个函数的图象位于哪些象限?y随x的增大如何变化?
(3)点B(3,4),C(5,2),D(,)是否在这个函数图象上?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017湖南省长沙市,第12题,3分)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为( )
A. B. C. D. 随H点位置的变化而变化
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC内接于⊙O,过点A作直线EF,
(1)如图1,若AB为直径,要使得EF是⊙O的切线,还需要添加的条件是(只须写出两种不同情况)① 或② .
(2)如图2,若AB为非直径的弦,∠CAE=∠B,试说明EF是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+mx﹣6=0.
(1)求证:不论m为何实数,方程总有两个不相等的实数根;
(2)若m=1,用配方法解这个一元二次方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com