【题目】如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.
(1)若∠A=40°,求∠DBC的度数;
(2)若AE=6,△CBD的周长为20,求BC的长.
【答案】(1)∠DBC=30°;(2)BC=8.
【解析】
(1)由在△ABC中,AB=AC,∠A=40°,利用等腰三角形的性质,即可求得∠ABC的度数,然后由AB的垂直平分线MN交AC于点D,根据线段垂直平分线的性质,可求得AD=BD,继而求得∠ABD的度数,则可求得∠DBC的度数.
(2)根据AE=6,AB=AC,得出CD+AD=12,由△CBD的周长为20,代入即可求出答案.
解:(1)∵在△ABC中,AB=AC,∠A=40°,
∴∠ABC=∠C=70°
∵AB的垂直平分线MN交AC于点D,
∴AD=BD,
∴∠ABD=∠A=40°,
∴∠DBC=∠ABC-∠ABD=30°
(2)∵AE=6,
∴AC=AB=2AE=12
∵△CBD的周长为20,
∴BC=20-(CD+BD)=20-(CD+AD)=20-12=8,
∴BC=8.
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(-1,0).设t=a+b+1,则t值的变化范围是( )
A. 0<t<1 B. 0<t<2 C. 1<t<2 D. -1<t<1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图 1,O 是等边三角形 ABC 内一点,连接 OA,OB,OC,且 OA=3,OB=4,OC=5,将△BAO 绕点 B 顺时针旋转后得到△BCD,连接 OD.
填空:①旋转角为 °;②线段 OD 的长是 ;③∠BDC= °;
(2)如图 2,O 是△ABC 内一点,且∠ABC=90°,BA=BC. 连接 OA,OB,OC,将△BAO 绕点 B 顺时针旋转后得到△BCD,连接 OD.当 OA,OB,OC 满足什么条件时,∠BDC=135°?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,完成相应的任务;全等四边形根据全等图形的定又可知:四条边分别相等、四个角也分别相等的两个四边形全等。在“探索三角形全等的条件”时,我们把两个三角形中“一条边和等”或“一个角相等”称为一个条件.智慧小组的同学类比“探索三角形全等条件”的方法探索“四边形全等的条件”,进行了如下思考:如图1,四边形和四边形中,连接对角线,这样两个四边形全等的问题就转化为“”与“”的问题。若先给定“”的条件,只要再增加个条件使“”即可推出两个四边形中“四条边分别相等、四个角也分别和等”,从而说明两个四边形全等。
按照智慧小组的思路,小明对图中的四边形与四边形先给出和下条件: ,,小亮在此基础上又给出“”两个条件.他们认为满足这五个条件能得到“四边形四边形”.
(1)请根据小明和小亮给出的条件,说明“四边形四边形”的理由;
(2)请从下面两题中任选一题作答,我选择 题.
在材料中“小明所给条件”的基础上,小颖又给出两个条件“”.满足这五个条件 (填“能”或“不能”)得到四边形四边形
在材料中“小明所给条件的基础上”,再添加两个关于原四边形的条件(要求:不同于小亮的条件),使四边形四边形,你添加的条件是① ,② .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线,
(1)如图1,点在直线上的左侧,直接写出,和之间的数量关系是 .
(2)如图2,点在直线的左侧,,分别平分,,直接写出和的数量关系是 .
(3)如图3,点在直线的右侧,仍平分,,那么和有怎样的数量关系?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电器超市销售每台进价分别为160元,200元的A、B两种型号的电风扇,表中是近两周的销售情况:
销售时段 | 销售数量 | 销售收入/元 | |
A种型号/台 | B种型号/台 | ||
第1周 | 3 | 5 | 1800 |
第2周 | 4 | 10 | 3200 |
(1)A、B两种型号的电风扇的销售单价是多少?
(2)若该超市准备用不多于5400元的金额再次采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com