精英家教网 > 初中数学 > 题目详情

【题目】如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.

(1)请在图中找出与∠AOC相等的角,并说明理由;

(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;

(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.

【答案】(1)∠ABC,∠BAM;理由见解析.(2)不变,(3)不存在.

【解析】

试题分析:(1)根据两直线平行,同旁内角互补可得求出∠ABC,再根据邻补角的定义求出∠BAM即可得解;

(2)根据两直线平行,内错角相等可得∠OBC=∠AOB,∠OFC=∠AOF,再根据角平分线的定义可得∠AOF=2∠AOB,从而得到比值不变;

(3)设∠OBA=x,表示出∠OEC,然后利用三角形的内角和定理表示出∠AOB、∠COE,再根据角平分线的定义根据∠AOB+∠COE=∠AOC列出方程求解即可.

试题解析:(1)∵OM∥CN,

∴∠AOC=180°-∠C=180°-108°=72°,

∠ABC=180°-∠OAB=180°-108°=72°,

又∵∠BAM=∠180°-∠OAB=180°-108°=72°,

∴与∠AOC相等的角是∠ABC,∠BAM;

(2)∵OM∥CN,

∴∠OBC=∠AOB,∠OFC=∠AOF,

∵OB平分∠AOF,

∴∠AOF=2∠AOB,

∴∠OFC=2∠OBC,

∴∠OBC:∠OFC=

(3)设∠OBA=x,则∠OEC=2x,

在△AOB中,∠AOB=180°-∠OAB-∠ABO=180°-x-108°=72°-x,

在△OCE中,∠COE=180°-∠C-∠OEC=180°-108°-2x=72°-2x,

∵OB平分∠AOF,OE平分∠COF,

∴∠COE+∠AOB=∠COF+∠AOF=∠AOC=×72°=36°,

∴72°-x+72°-2x=36°,

解得x=36°,

即∠OBA=36°,

此时,∠OEC=2×36°=72°,

∠COE=72°-2×36°=0°,

点C、E重合,

所以,不存在.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知OB平分∠AOC,OD平分∠COE,∠AOD=110°,∠BOE=100°,求∠AOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数的图象如右图所示,则结论:

两函数图象的交点的坐标为时,

时, 逐渐增大时, 随着的增大而增大, 随着的增大而减小.

其中正确结论的序号是

【答案】①③④

【解析】试题分析:反比例函数与一次函数的交点问题.运用一次函数和反比例函数的性质来解决的一道常见的数形结合的函数试题.一次函数和反比例函数的交点坐标就是一次函数与反比例函数组成的方程组的解.根据k0确定一次函数和反比例函数在第一象限的图象特征来确定其增减性;根据x=1时求出点BC的坐标从而求出BC的值;当x=2时两个函数的函数值相等时根据图象求得x2y1y2

试题解析:由一次函数与反比例函数的解析式

解得,

∴A22),故正确;

由图象得x2时,y1y2;故错误;

x=1时,B13),C11),∴BC=3,故正确;

一次函数是增函数,yx的增大而增大,反比例函数k0yx的增大而减小.故正确.

∴①③④正确.

考点:反比例函数与一次函数的交点问题.

型】填空
束】
15

【题目】如图, P1OA1P2A1A2是等腰直角三角形,在函数的图象上,斜边都在轴上,则点的坐标是____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在足球比赛中,甲、乙两名队员互相配合向对方球门MN进攻,当甲带球冲到A点时,乙已跟随冲到B点,如图24-1-4-12.此时,甲自己直接射门好,还是迅速将球传给乙,让乙射门好?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O的半径长为50cm,弦AB长50cm.求:点OAB的距离

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点B、E分别在直线ACDF上,若∠AGB=∠EHF,∠C=∠D,可以证明∠A=∠F.请完成下面证明过程中的各项“填空”.

证明:∵∠AGB=∠EHF(理由:

∠AGB= (对顶角相等)

∴∠EHF=∠DGF,∴DB∥EC(理由:

=∠DBA(两直线平行,同位角相等)

又∵∠C=∠D,∴∠DBA=∠D,

∴DF∥ (内错角相等,两直线平行)

∴∠A=∠F(理由: ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上有A、B、C、D四个点,且线段AB=4,CD=6,已知A表示的数是﹣10,C表示的数是8,若线段AB以每秒6个单位长度的速度,线段CD以每秒2个单位长度的速度在数轴上运动(AB左侧,CD左侧)

(1)B,D两点所表示的数分别是      

(2)若线段AB向右运动,同时线段CD向左运动,经过多少秒时,BC=2;

(3)若线段AB、CD同时向右运动,同时点P从原点出发以每秒1个单位长度的速度向右运动,经过多少秒时,点P到点A,C的距离相等?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C在线段AB上,AC=8 cm,CB=6 cm,点MN分别是ACBC的中点.

(1)求线段MN的长;

(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;

(3)若C在线段AB的延长线上,且满足ACBC=bcm,MN分别为ACBC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;

(4)你能用一句简洁的话,描述你发现的结论吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校书法兴趣小组准备到文具店购买A,B两种类型的毛笔,文具店的销售方法是:一次性购买A型毛笔不超过20支时,按零售价销售;超过20支时,超过部分每支比零售价低0.4元,其余部分仍按零售价销售.一次性购买B型毛笔不超过15支时,按零售价销售;超过15支时,超过部分每支比零售价低0.6元,其余部分仍按零售价销售.如果全组共有20名同学,若每人各买1A型毛笔和2B型毛笔,共支付145元;若每人各买2A型毛笔和1B型毛笔,共支付129元.这家文具店的A,B两种类型毛笔的零售价各是多少?

查看答案和解析>>

同步练习册答案